Final dialgebras : from categories to allegories
Backhouse, Roland ; Hoogendijk, Paul
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999), p. 401-426 / Harvested from Numdam
Publié le : 1999-01-01
@article{ITA_1999__33_4-5_401_0,
     author = {Backhouse, Roland and Hoogendijk, Paul},
     title = {Final dialgebras : from categories to allegories},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {33},
     year = {1999},
     pages = {401-426},
     mrnumber = {1748664},
     zbl = {0943.68014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1999__33_4-5_401_0}
}
Backhouse, Roland; Hoogendijk, Paul. Final dialgebras : from categories to allegories. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) pp. 401-426. http://gdmltest.u-ga.fr/item/ITA_1999__33_4-5_401_0/

[1] C. J. Aarts, R. C. Backhouse, P. Hoogendijk, T. S. Voermans and J. Van Der Woude, A relational theory of datatypes. Available via World-Wide Web at http://www.win.tue.nl/cs/wp/papers (September 1992).

[2] P. Aczel, Non Well-Founded Sets, Number 14 in CSLI Lecture Notes. Center for the Study of Language and Information (Stanford, California, 1988). | MR 940014 | Zbl 0668.04001

[3] P. Aczel and N. Mendler, A final coalgebra theorem, D.H. Pitt, Ed., Category Theory and Computer Science. Springer Verlag, Lecture Notes in Comput. Sci. (1989) 357-365. | MR 1031572

[4] R. C. Backhouse, P. De Bruin, P. Hoogendijk, G. Malcolm, T. S. Voermans and J. Van Der Woude, Polynomial relators, M. Nivat, C.S. Rattray, T. Rus and G. Scollo, Eds., in Proc. of the 2nd Conference on Algebraic Methodology and Software Technology, AMAST'91. Springer-Verlag, Workshops in Computing (1992) 303-326.

[5] R. Bird, O. De Moor and P. Hoogendijk, Generic functional programming with types and relations. J. Funct. Programming 6 (1996) 1-28. | MR 1391639 | Zbl 0848.68013

[6] R. S. Bird and O. De Moor, Algebra of Programming. Prentice-Hall International (1996). | Zbl 0867.68042

[7] H. Doornbos, Reductivity arguments and program construction. Ph. D. Thesis, Eindhoven University of Technology, Department of Mathematics and Computing Science (1996). | MR 1392220 | Zbl 0852.68007

[8] P. J. Freyd and A. Ščcedrov, Categories, Allegories. North-Holland (1990). | MR 1071176 | Zbl 0698.18002

[9] T. Hagino, A typed lambda calculus with categorical type constructors, D. H. Pitt, A. Poigne and D. E. Rydeheard, Eds., Category Theory and Computer Science. Springer-Verlag, Lecture Notes in Comput Sci. 283(1988) 140-57. | MR 925228 | Zbl 0643.03010

[10] P. Hoogendijk, A Generic Theory of Datatypes. Ph. D. Thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology (1997). | MR 1459715 | Zbl 0900.68164

[11] P. Hoogendijk and R. Backhouse, When do datatypes commute? E. Moggi and G. Rosolini, Eds., Category Theory and Computer Science, 7th International Conference. Springer-Verlag, Lecture Notes in Comput Sci. 1290 (1997) 242-260. | MR 1641389 | Zbl 0884.68086

[12] P. Hoogendijk and O. De Moor, What is a datatype? Technical Report 96/16, Department of Mathematics and Computing Science, Eindhoven University of Technology, 1996. J. Funct. Programming, to appear.

[13] B. Jacobs and J. Rutten, A tutorial on (co)algebras and (co)induction. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 62 (1997) 222-259. | Zbl 0880.68070

[14] P. Jansson and J. Jeuring, PolyP - a polytypic programming language extension. In POPL '97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press (1997) 470-482.

[15] C. B. Jay, A semantics for shape. Sci. Comput Programming 25 (1995) 251-283. | MR 1374365 | Zbl 0853.68119

[16] C. B. Jay and J. R. B. Cockett, Shapely types and shape polymorphisim, D. Sannella, Ed., SOP '94' 5th European Symposium on Programming. Springer Verlag, Lecture Notes in Comput. Sci. (1994) 302-316. | MR 1300462

[17] J. Jeuring, Polytypic pattern matching. In Conference Record of FPCA '95, SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming Languages and Computer Architecture (1995) 238-248.

[18] J. Jeuring and P. Jansson, Polytypic programming, J. Launchbury, E. Meijer and T. Sheard, Eds., Proceedings of the Second International Summer School on Advanced Functional Programming Techniques. Springer-Verlag, Lecture Notes in Comput. Sci. 1129 (1996) 68-114.

[19] J. Lambek, A fixpoint theorem for complete categories. Math. Z. 103 (1968) 151-161. | MR 224671 | Zbl 0149.26105

[20] J. Lambek, Subequalizers. Canad. Math. Bull. 13 (1970) 337-349. | MR 274552 | Zbl 0201.02302

[21] S. Maclane, Categories for the Working Mathematician. Springer-Verlag, New York (1971). | MR 354798 | Zbl 0232.18001

[22] L. Meertens, Calculate polytypically! H. Kuchen and S. Doaitse Swierstra, Eds., Proceedings of the Eighth International Symposium PLILP '96 Programming Languages: Implementations, Logics and Programs. Springer Verlag, Lecture Notes in Comput. Sci. 1140 (1996) 1-16.

[23] E. Meijer, M. M. Fokkinga and R. Paterson, Functional programming with bananas, lenses, envelopes and barbed wire. In FPCA91: Functional Programming Languages and Computer Architecture. Springer-Verlag, Lecture Notes in Comput. Sci. 523 (1991) 124-144. | MR 1148099

[24] S.D. Swierstra and O. De Moor, Virtual data structures, H. Partsch, B. Möller and S. Schuman, Eds., Formal Program Development. Springer-Verlag, Lecture Notes in Comput. Sci. 755 (1993) 355-371. | MR 1298904