Topologies, continuity and bisimulations
Davoren, J. M.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999), p. 357-381 / Harvested from Numdam
Publié le : 1999-01-01
@article{ITA_1999__33_4-5_357_0,
     author = {Davoren, J. M.},
     title = {Topologies, continuity and bisimulations},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {33},
     year = {1999},
     pages = {357-381},
     mrnumber = {1748661},
     zbl = {0940.03021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1999__33_4-5_357_0}
}
Davoren, J. M. Topologies, continuity and bisimulations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) pp. 357-381. http://gdmltest.u-ga.fr/item/ITA_1999__33_4-5_357_0/

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S. Yovine, The algorithmic analysis of hybrid Systems. Theoret. Comput. Sci. 138 (19953-34. | MR 1318291 | Zbl 0874.68206

[2] S. Ambler, M. Z. Kwiatkowska and N. Measor, Duality and the completeness of the modal μ-calculus. Theoret Comput. Sci. 151 (1995) 3-27. | MR 1362147 | Zbl 0872.03010

[3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston (1990). | MR 1048347 | Zbl 0713.49021

[4] M. Bonsangue and M. Kwiatkowska, Reinterpreting the modal μ-calculus, A. Ponse, M. de Rijke and Y. Venema, Eds., Modal Logic and Process Algebra. CLSI Publications, Stanford (1995) 65-83. | MR 1375702

[5] J. Davoren, Modal Logics for Continuous Dynamics. Ph. D. Thesis, Department of Mathematics Cornell University (1998). | MR 2696762

[6] J. M. Davoren, On hybrid Systems and the modal μ-calculus, P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode and S. Sastry, Eds., Hybrid Systems V. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1567 (1999) 38-69. | Zbl 0928.93027

[7] C. Daws, A. Olivero, S. Tripakis and S. Yovine, The tool KRONOS, R. Alur, T. Henzinger and E. D. Sontag, Eds., Hybrid Systems III. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1066 (1996) 208-219.

[8] T. Henzinger, The theory of hybrid automata, in Proc. of 11th Annual IEEE Symposium on Logic in Computer Science (LICS'96). IEEE Computer Society Press (1996) 278-292. | MR 1461841

[9] T. Henzinger, P. Kopke, A. Puri and P. Varaiya, What's decidable about hybrid automata? J. Comput. System Sci. 57 (1998) 94-124. | MR 1649810 | Zbl 0920.68091

[10] M. Hollenberg, Logic and Bisimulation. Ph. D. Thesis, Department of Philosophy, Utrecht University (1998).

[11] B. Jónsson and A. Tarski, Boolean algebras with operators, part i. Amer. J. Math. 73 (1951) 891-939. | MR 44502 | Zbl 0045.31505

[12] D. Kozen, Results on the propositional µ-calculus. Theoret Comput. Sci. 27 (1983) 333-354. | MR 731069 | Zbl 0553.03007

[13] G. Lafferriere, G. Pappas and S. Sastry, O-minimal hybrid Systems. Technical Report UCB/ERL M98/29, Dept. EECS, UC Berkeley (1998). | MR 1742137

[14] G. Lafferriere, G. Pappas and S. Yovine, Decidable hybrid Systems. Technical Report UCB/ERL M98/39, Dept. EECS, UC Berkeley (1998).

[15] A. Nerode and W. Kohn, Models for hybrid Systems: Automata, topologies, controllability, observability, R. Grossman, A. Nerode, A. Ravn and H. Rischel, Eds., Hybrid Systems. Springer-Verlag, Berlin, Lecture Notes in Comput Sci. 736 (1993297-316.

[16] M. B. Smyth, Topology, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 1 (1992) 641-761. | MR 1426367

[17] C. Stirling, Modal and temporal logics, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Clarendon Press, Oxford, Handb. Log. Comput Sci. 2 (1992) 477-563. | MR 1381700

[18] L. Van Den Dries, Tame Topology and O-minimal Structures. Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser. 248 (1998). | MR 1633348 | Zbl 0953.03045

[19] I. Walukiewicz, A note on the completeness of Kozen's axiomatization of the propositonal µ-calculus. Bull. Symbolic Logic 2 (1996349-366. | MR 1416873 | Zbl 0868.03010