@article{ITA_1999__33_4-5_341_0, author = {Bradfield, J. C.}, title = {Fixpoint alternation : arithmetic, transition systems, and the binary tree}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {33}, year = {1999}, pages = {341-356}, mrnumber = {1748660}, zbl = {0945.68126}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_1999__33_4-5_341_0} }
Bradfield, J. C. Fixpoint alternation : arithmetic, transition systems, and the binary tree. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) pp. 341-356. http://gdmltest.u-ga.fr/item/ITA_1999__33_4-5_341_0/
[1] The µ-calculus alternation-depth hierarchy is strict on binary trees, this volume, p. 329. | Numdam | MR 1748659 | Zbl 0945.68118
,[2] Verifying Temporal Properties of Systems. Birkhäuser, Boston (1991). | MR 1138724 | Zbl 0753.68065
,[3] On the expressivity of the modal mu-calculus, C. Puech and R. Reischuk, Eds., in Proc. STACS '96. Springer, Berlin, Lecture Notes in Comput. Sci. 1046 (1996) 479-490. | MR 1462119
,[4] The modal mu-calculus alternation hierarchy is strict. Theoret. Comput. Sci. 195 (1997) 133-153. | MR 1609327 | Zbl 0915.03017
,[5] Simplifying the modal mu-calculus alternation hierarchy, M. Morvan, C. Meinel and D. Krob, Eds., in Proc. STACS 98. Springer, Berlin, Lecture Notes in Comput. Sci. 1373 (1998) 39-49. | MR 1650761 | Zbl 0892.03005
,[6] Fixpoint alternation on the binary tree, Workshop on Fixpoints in Computer Science (FICS). Brno (1998).
,[7] Tree automata, mu-calculus and determinacy, in Proc. FOCS 91 (1991).
and ,[8] Efficient model checking in fragments of the propositional mu-calculus, in Proc. 1st LICS. IEEE, Los Alamitos, CA (1986) 267-278.
and ,[9] Automata for the µ-calculus and related results, in Proc. MFCS '95. Springer, Berlin, Lecture Notes in Comput. Sci. 969 (1995) 552-562. | MR 1467281 | Zbl 1193.68163
and ,[10] Models of Peano Arithmetic. Oxford University Press, Oxford (1991). | MR 1098499 | Zbl 0744.03037
,[11] Results on the propositional mu-calculus. Theoret Comput. Sci. 27 (1983) 333-354. | MR 731069 | Zbl 0553.03007
,[12] A hierarchy theorem for the mu-calculus, F. Meyer auf der Heide and B. Monien, Eds., in Proc. ICALP '96. Springer, Berlin, Lecture Notes in Comput. Sci. 1099 (1996) 87-109. | MR 1464442 | Zbl 1045.03516
,[13] µ-definable sets of integers, J. Symbolic Logic 58 (1993) 291-313. | MR 1217190 | Zbl 0776.03022
,[14] On fixed point clones, L. Kott, Ed., in Proc. 13th ICALP. Springer, Berlin, Lecture Notes in Comput. Sci. 226 (1986) 464-473. | MR 864709 | Zbl 0596.68036
,[15] Fixed point characterization of infinite behavior of finite state systems. Theoret. Comput. Sci. 189 (1997) 1-69. | MR 1483617 | Zbl 0893.68102
,[16] Modal and temporal logics, S. Abramsky, D. Gabbay and T. Maibaum, Eds. Oxford University Press, Handb. Log. Comput. Sci. 2 (1991) 477-563. | MR 1381700
,[17] Monadic second order logic on tree-like structures, C. Puech and Rüdiger Reischuk, Eds., in Proc. STACS '96. Springer, Berlin, Lecture Notes in Comput. Sci. 1046 (1996) 401-414. | MR 1462113
,