Strongly locally testable semigroups with commuting idempotents and related languages
Selmi, Carla
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999), p. 47-57 / Harvested from Numdam
Publié le : 1999-01-01
@article{ITA_1999__33_1_47_0,
     author = {Selmi, Carla},
     title = {Strongly locally testable semigroups with commuting idempotents and related languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {33},
     year = {1999},
     pages = {47-57},
     mrnumber = {1705855},
     zbl = {0940.68072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1999__33_1_47_0}
}
Selmi, Carla. Strongly locally testable semigroups with commuting idempotents and related languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) pp. 47-57. http://gdmltest.u-ga.fr/item/ITA_1999__33_1_47_0/

[1] J. Almeida, Finite Semigroups and Universal Algebra, River Edge. N.J. World Scientific, Singapore (1994). | MR 1331143 | Zbl 0844.20039

[2] J. Almeida, The algebra of implicit operations. Algebra Universalis 26 (1989) 16-72. | MR 981423 | Zbl 0671.08003

[3] J. Almeida, Equations for pseudovarieties, J.-E. Pin Ed., Formal properties of finite automata and applications, Springer, Lecture Notes in Computer Science 386 (1989). | MR 1051957

[4] J. Almeida, Implicit operations on finit e J-trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. | MR 1090741 | Zbl 0724.08003

[5] J. Almeida, On pseudovarieties, varietes of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990) 333-350. | MR 1058478 | Zbl 0715.08006

[6] J. Almeida and P. Weil, Relatively free profinite monoids: an introduction and examples, J. B. Fountain and V.A.R. Gould Eds., Semigroups, Formal Languages and Groups (to appear) (Da rivedere). | MR 1630619 | Zbl 0877.20038

[7] J. Almeida and P. Weil, Free profinite semigroups over semidirect products, Izv. VUZ Matematika 39 (1995) 3-31; English version, Russian Mathem. (Izv. VUZ.) 39 (1995) 1-28. | MR 1391317 | Zbl 0847.20055

[8] C. J. Ash, T. E. Hall and J.-E. Pin, On the varieties of languages associated with some varieties of finite monoids with commuting idempotents. Inform. and Computation 86 (1990) 32-42. | MR 1049266 | Zbl 0699.68091

[9] D. Beauquier and J.-E. Pin, Languages and scanners. Theoret. Comput. Sci. 84 (1991) 3-21. | MR 1161008 | Zbl 0753.68054

[10] J. A. Brzozowski and I. Simon, Characterization of locally testable events. Discrete Math. 4 (1973) 243-271. | MR 319404 | Zbl 0255.94032

[11] S. Eilenberg, Automata, languages and machines. Academic Press, New York, Vol. B (1976). | MR 530383 | Zbl 0359.94067

[12] S. Eilenberg and M. P. Schützenberger, On pseudovarieties. Adv. in Math. 19 (1976) 413-418. | MR 401604 | Zbl 0351.20035

[13] R. Mcnaughton, Algebraic decision procedures for local testability. Math. Systems Theory 8 (1974) 60-76. | MR 392544 | Zbl 0287.02022

[14] J.-E. Pin, Variétés de Langages Formels, Masson, Paris (1984). | MR 752695 | Zbl 0636.68093

[15] J.-E. Pin and H. Straubing, Monoids of upper triangular matrices. Colloq. Math. Societatis Janos Bolyai 39 Semigroups, Szeged (1981) 259-272. | MR 873155 | Zbl 0635.20028

[16] J. Reiterman, The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. | MR 634411 | Zbl 0484.08007

[17] M. P. Schützenberger, On finite monoids having only trivial subgroups. Inform. and Control 8 (1965) 190-194. | MR 176883 | Zbl 0131.02001

[18] C. Selmi, Langages et semigroupes testables. Doctoral thesis, University of Paris VII, Paris (1994).

[19] C. Selmi, Over Testable Languages. Theoret Comput. Sci. 162 (1996) 157-190. | MR 1398868 | Zbl 0872.68092

[20] I. Simon, Piecewise testable events. Proc. 2nd GI Conf., Springer, Lecture Notes in Computer Science 33 (1975) 214-222. | MR 427498 | Zbl 0316.68034

[21] P. Weil, Implicit operations on pseudovarieties: an introduction, J. Rhodes Ed., World Scientific, Singapore, Semigroups and Monoids and Applications (1991). | MR 1142369 | Zbl 0799.20051

[22] Y. Zalcstein, Locally testable languages. J. Computer and System Sciences 6 (1972) 151-167. | MR 307538 | Zbl 0242.68038

[23] Y. Zalcstein, Locally testable semigroups. Semigroup Forum 5 (1973) 216-227. | MR 320194 | Zbl 0273.20049

[24] M. Zeitoun, Opérations implicites et variétés de semigroupes finis. Doctoral thesis, University of Paris VII, Paris (1993).