@article{ITA_1999__33_1_47_0, author = {Selmi, Carla}, title = {Strongly locally testable semigroups with commuting idempotents and related languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {33}, year = {1999}, pages = {47-57}, mrnumber = {1705855}, zbl = {0940.68072}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_1999__33_1_47_0} }
Selmi, Carla. Strongly locally testable semigroups with commuting idempotents and related languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) pp. 47-57. http://gdmltest.u-ga.fr/item/ITA_1999__33_1_47_0/
[1] Finite Semigroups and Universal Algebra, River Edge. N.J. World Scientific, Singapore (1994). | MR 1331143 | Zbl 0844.20039
,[2] The algebra of implicit operations. Algebra Universalis 26 (1989) 16-72. | MR 981423 | Zbl 0671.08003
,[3] Equations for pseudovarieties, J.-E. Pin Ed., Formal properties of finite automata and applications, Springer, Lecture Notes in Computer Science 386 (1989). | MR 1051957
,[4] Implicit operations on finit e J-trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. | MR 1090741 | Zbl 0724.08003
,[5] On pseudovarieties, varietes of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990) 333-350. | MR 1058478 | Zbl 0715.08006
,[6] Relatively free profinite monoids: an introduction and examples, J. B. Fountain and V.A.R. Gould Eds., Semigroups, Formal Languages and Groups (to appear) (Da rivedere). | MR 1630619 | Zbl 0877.20038
and ,[7] Free profinite semigroups over semidirect products, Izv. VUZ Matematika 39 (1995) 3-31; English version, Russian Mathem. (Izv. VUZ.) 39 (1995) 1-28. | MR 1391317 | Zbl 0847.20055
and ,[8] On the varieties of languages associated with some varieties of finite monoids with commuting idempotents. Inform. and Computation 86 (1990) 32-42. | MR 1049266 | Zbl 0699.68091
, and ,[9] Languages and scanners. Theoret. Comput. Sci. 84 (1991) 3-21. | MR 1161008 | Zbl 0753.68054
and ,[10] Characterization of locally testable events. Discrete Math. 4 (1973) 243-271. | MR 319404 | Zbl 0255.94032
and ,[11] Automata, languages and machines. Academic Press, New York, Vol. B (1976). | MR 530383 | Zbl 0359.94067
,[12] On pseudovarieties. Adv. in Math. 19 (1976) 413-418. | MR 401604 | Zbl 0351.20035
and ,[13] Algebraic decision procedures for local testability. Math. Systems Theory 8 (1974) 60-76. | MR 392544 | Zbl 0287.02022
,[14] Variétés de Langages Formels, Masson, Paris (1984). | MR 752695 | Zbl 0636.68093
,[15] Monoids of upper triangular matrices. Colloq. Math. Societatis Janos Bolyai 39 Semigroups, Szeged (1981) 259-272. | MR 873155 | Zbl 0635.20028
and ,[16] The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. | MR 634411 | Zbl 0484.08007
,[17] On finite monoids having only trivial subgroups. Inform. and Control 8 (1965) 190-194. | MR 176883 | Zbl 0131.02001
,[18] Langages et semigroupes testables. Doctoral thesis, University of Paris VII, Paris (1994).
,[19] Over Testable Languages. Theoret Comput. Sci. 162 (1996) 157-190. | MR 1398868 | Zbl 0872.68092
,[20] Piecewise testable events. Proc. 2nd GI Conf., Springer, Lecture Notes in Computer Science 33 (1975) 214-222. | MR 427498 | Zbl 0316.68034
,[21] Implicit operations on pseudovarieties: an introduction, J. Rhodes Ed., World Scientific, Singapore, Semigroups and Monoids and Applications (1991). | MR 1142369 | Zbl 0799.20051
,[22] Locally testable languages. J. Computer and System Sciences 6 (1972) 151-167. | MR 307538 | Zbl 0242.68038
,[23] Locally testable semigroups. Semigroup Forum 5 (1973) 216-227. | MR 320194 | Zbl 0273.20049
,[24] Opérations implicites et variétés de semigroupes finis. Doctoral thesis, University of Paris VII, Paris (1993).
,