@article{ITA_1999__33_1_33_0,
author = {Serna, Maria and Xhafa, Fatos},
title = {On the average case complexity of some P-complete problems},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
volume = {33},
year = {1999},
pages = {33-45},
mrnumber = {1705854},
zbl = {0927.68038},
language = {en},
url = {http://dml.mathdoc.fr/item/ITA_1999__33_1_33_0}
}
Serna, Maria; Xhafa, Fatos. On the average case complexity of some P-complete problems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) pp. 33-45. http://gdmltest.u-ga.fr/item/ITA_1999__33_1_33_0/
[1] , and , Structural complexity II, Springer Verlag (1995). | MR 1324338
[2] and , Probabilistic analysis of a parallel algorithm for finding a maximal independent set. Random Structures and Algorithrns 1 (1990) 39-50. | MR 1068490 | Zbl 0707.68042
[3] , An Observation on time-storage trade-offs. J. Comp. Syst. Sci. 9 (1974) 308-316. | MR 398160 | Zbl 0306.68026
[4] , and , Parallel graph algorithms that are efficient in average, in Proc. of 28th IEEE Symposium on Foundations of Computer Science (1987) 260-269.
[5] , , and , On the expected depth of Boolean circuits. Technical Report LSI-94-7-R, Universitat Politècnica de Catalunya, Dept. de LSI (1994).
[6] , and , Limits to parallel computation: P-completeness theory. Oxford University Press (1995). | MR 1333600 | Zbl 0829.68068
[7] and , A compendium of problems complete for P. Manuscript (1984).
[8] and , Complete problems for deterministic polynomial time. Theoret. Comput. Sci. 3 (1977) 105-117. | MR 455543 | Zbl 0352.68068
[9] , The art of computer programming, Vol. 1. Addison-Wesley (1973). | MR 378456
[10] , Complexity of finitely presented algebras; in Proc. of 9th ACM STOC (1977) 164-167. | MR 488999
[11] , The circuit value problem is logspace complete for P. SIGACT News 7 (1975) 18-20.
[12] , The parallel approximbility of P-complete problems. PhD thesis, Universitat Politècnica de Catalunya (1990).
[13] , Approximating linear programming is logspace complete for P. Inform. Proc. Lett 37 (1991) 233-236. | MR 1095711 | Zbl 0713.90046
[14] and , P-complete approximation problems. J. Assoc. Comput. Mach. 23 (1976) 555-565. | MR 408313 | Zbl 0348.90152
[15] and , The approximability of problems complete for P, in International Symposium on Optimal Algorithms, Springer-Verlag, Lecture Notes in Computer Science 401 (1989) 193-204. | MR 1048163 | Zbl 0704.68041
[16] and , On the expected depth of randomly generated circuits, J. Díaz and M. Serna Eds., in Proc. of Fourth European Symposium on Algorithms, ESA'96, Springer-Verlag, Lecture Notes in Computer Science 1136 (1996) 208-220. | MR 1469233