Finite idempotent groupoids and regular languages
Beaudry, M.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 32 (1998), p. 127-140 / Harvested from Numdam
Publié le : 1998-01-01
@article{ITA_1998__32_4-6_127_0,
     author = {Beaudry, M.},
     title = {Finite idempotent groupoids and regular languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {32},
     year = {1998},
     pages = {127-140},
     mrnumber = {1672715},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1998__32_4-6_127_0}
}
Beaudry, M. Finite idempotent groupoids and regular languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 32 (1998) pp. 127-140. http://gdmltest.u-ga.fr/item/ITA_1998__32_4-6_127_0/

1. M. Beaudry, Characterization of idempotent monoids, Information Processing Letters, 1989, 31, pp. 163-166. | MR 998466 | Zbl 0671.68025

2. M. Beaudry, Languages recognized by finite aperiodic groupoids, Proc. 13th STACS, LNCS, 1996, 1046, pp. 113-124. | MR 1462090

3. F. Bédard, F. Lemieux and P. Mckenzie, Extensions to Barrington's M-program model, Theor. Comp. Sc., 1993, 107, pp. 31-61. | MR 1201164 | Zbl 0764.68040

4. M. Beaudry, F. Lemieux and D. Thérien , Finite loops recognize exactly the regular open languages, Proc. 24th ICALP, LNCS 1256, 1997, pp. 110-120. | MR 1616178

5. R. H. Bruck, "A survey of binary Systems", Springer-Verlag, 1966. | MR 93552 | Zbl 0141.01401

6. H. Caussinus, Un groupoïde permettant de caractériser SAC1, Manuscript, 1993.

7. H. Caussinus, Contributions à l'étude du non-déterminisme restreint, thèse de doctorat, Université de Montréal, Montréal, 1996.

8. H. Caussinus and F. Lemieux, The Complexity of Computing over Quasigroups, Proc. FST & TCS, 1994, pp. 36-47. | MR 1318016 | Zbl 1044.68679

9. S. Eilenberg, "Automata, Languages and Machines, Vol. B", Academic Press, 1976. | MR 530383 | Zbl 0359.94067

10. F. Gécseg and M. Steinby, "Tree Automata", Akadémiai Kiadó, Budapest, 1984. | MR 735615 | Zbl 0537.68056

11. S. Greibach, The Hardest Context-Free Language, SIAM J. Comp., 1973, 2, pp. 304-310. | MR 334591 | Zbl 0278.68073

12. G. Lallement, "Semigroups and Combinatorial Applications", Addison-Wesley, 1979. | MR 530552 | Zbl 0421.20025

13. R. Mcnaughton, Parenthesis Grammars, J. ACM, 1967, 14, pp. 490-500. | MR 234781 | Zbl 0168.01206

14. A. Muscholl, Characterizations of LOG, LOGDCFL and NP based on groupoid programs, Manuscript, 1992.

15. J.-É. Pin, "Variétés de langages formels", Masson, 1984. | MR 752695 | Zbl 0636.68093

16. M. Steinby, A theory of tree language varieties, in Tree Automata and Languages, M. NIVAT and A. PODELSKI Eds., North-Holland, 1992, pp. 57-82. | MR 1196732 | Zbl 0798.68087

17. W. Thomas, Logical aspects in the study of tree languages, in 9th Coll. on Trees in Algebra and Programming, B. COURCELLE Ed., Cambridge University Press, 1984, pp. 31-51. | MR 787450 | Zbl 0557.68051

18. T. Wilke, Algebras for classifying regular tree languages and an application to frontier testability, Proc. 20th ICALP, LNCS, 1993, 700, pp. 347-358.