@article{ITA_1994__28_5_465_0, author = {Geffert, Viliam}, title = {A hierarchy that does not collapse : alternations in low level space}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {28}, year = {1994}, pages = {465-512}, mrnumber = {1296648}, zbl = {0884.68054}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_1994__28_5_465_0} }
Geffert, Viliam. A hierarchy that does not collapse : alternations in low level space. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 28 (1994) pp. 465-512. http://gdmltest.u-ga.fr/item/ITA_1994__28_5_465_0/
1. Arthur-Merlin games: A randomized proof-system, and a hierarchy of complexity classes, J. Comput. Syst. Sciences, 1988, 36, pp. 254-276. | MR 950433 | Zbl 0652.03029
and ,2. Relativizations of the P =?NP question, SIAM J. Comput., 1975, 4(4), pp. 431-442. | MR 395311 | Zbl 0323.68033
, and ,3. Alternation for two-way machines with sublogarithmic space, to appear in Proc. of STACS'93. | MR 1249277 | Zbl 0797.68056
,4. The alternation hierarchy for machines with sublogarithmic space is infinite, Research Report 8589-CS, University of Bonn, 1993. | MR 1288535
, and ,5. Alternation, J. Assoc. Comput. Mach., 1981, 28, pp.114-133. | MR 603186 | Zbl 0473.68043
, and ,6. Some observations concerning alternating Turing machines using small space, Inform. Process. Lett., 1987, 25, pp.1-9 (Erratum: 27, 1988, 53). | MR 896396 | Zbl 0635.68040
, , and ,7. Space bounds for processing contentless inputs, J. Comput. Syst. Sciences, 1975, 11, pp.118-128. | MR 398161 | Zbl 0307.68036
and ,8. Nondeterministic computations in sublogarithmic space and space constructibility, SIAM J. Comput., 1991, 20(3), pp. 484-498. | MR 1094527 | Zbl 0762.68022
,9. Sublogarithmic ∑2-SPACE is not closed under complement and other separation results, RAIRO Theoretical Informaties and Applications, 1993, 27(4), pp. 349-366. | Numdam | MR 1238056 | Zbl 0804.68047
,10. Tally versions of the Savitch and Immerman-Szelepcsényi theorems for sublogarithmic space, SIAM J. Comput., 1993, 22(1), pp.102-113. | MR 1202863 | Zbl 0766.68039
,11. The collapsing hierarchies, EATCS Bulletin, 1987, 33, pp. 26-39. | Zbl 0661.68047
,12. The strong exponential hierarchy collapses, Proc. of 19th ACM STOC Conference, 1987, pp.110-122.
,13. Nondeterministic space is closed under complement, SIAM J. Comput., 1988, 17, pp. 935-938. | MR 961049 | Zbl 0668.68056
,14. ASPACE( o (log log)) is regular, SIAM J. Comput., 1983, 22(1), pp. 136-146. | MR 1202865 | Zbl 0767.68039
,15. The logarithmic alternation hierarchy collapses: A∑L2 = AπL2, Information and Computation, 1989, 80, pp. 269-288. | MR 984485 | Zbl 0668.68055
, and ,16. Separating the lower levels of the sublogarithmic space hierarchy, to appear in Proc. of STACS'93. | MR 1249278 | Zbl 0799.68092
and ,17. The sublogarithmic space hierarchy is infinite, Technical Report, Technical University of Darmstadt, 1993.
and ,18. Space bounded computations: Review and new separation results, Theoret. Comp. Sci., 1991, 80, pp. 289-302. | MR 1117067 | Zbl 0745.68051
, and ,19. Collapsing oracle hiérarchies, census fonctions, and logarithmically many queries, Proc. of STACS'88, Springer-Verlag, LNCS, 294, 1988, pp. 91-97. | MR 935790 | Zbl 0648.68065
and ,20. A note on notions of tape constructibility, Technical Report CSD-TR-187, Pennsylvania State University, 1976.
,21. Hierarchies of memory limited computations, Proc. of 1965 IEEE Conference Record on Switching Circuit Theory and Logical Design, 1965, pp. 179-190. | Zbl 0229.02033
, and ,22. The method of forced enumeration for nondeterministic automata, Acta Informatica, 1988, 26, pp. 279-284. | MR 975334 | Zbl 0638.68046
,23. Some remarks on the alternating hierarchy and closure under complement for sublogarithmic space, Information Processing Letters, 1989, 33, pp. 73-78. | MR 1031596 | Zbl 0684.68062
,24. ∑2-SPACE (n) is closed under complement J. Comput Syst. Sciences, 1987, 35, pp. 145-152. | MR 910209 | Zbl 0654.68053
,25. Separating the polynomial time hierarchy by oracles, Proc. of 26th FOCS, 1985, pp. 1-10.
,