@article{ITA_1993__27_4_341_0, author = {Pallo, J. M.}, title = {An algorithm to compute the m\"obius function of the rotation lattice of binary trees}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {27}, year = {1993}, pages = {341-348}, mrnumber = {1238055}, zbl = {0779.68066}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_1993__27_4_341_0} }
Pallo, J. M. An algorithm to compute the möbius function of the rotation lattice of binary trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 27 (1993) pp. 341-348. http://gdmltest.u-ga.fr/item/ITA_1993__27_4_341_0/
1. Two families of Newman lattices, to appear. | MR 1287019 | Zbl 0810.06006
and ,2. A-transformation dans les arbres n-aires, Discrete Math., 45, 1983, pp. 153-163. | MR 704232 | Zbl 0504.68040
et ,3. Les treillis pseudocomplémentés finis, Europ. J. Combinatorics, 13, 1992, pp.89-107. | MR 1158803 | Zbl 0759.06010
and ,4. An introduction to probability theory and its applications, John Wiley, New-York, 1957. | MR 88081 | Zbl 0077.12201
,5. Problèmes d'associativité : une structure de treillis fini induite par une loi demi-associative, J. Combinat. Theory, 2, 1967, pp. 215-242. | MR 238984 | Zbl 0158.01904
and ,6. General lattice theory, Academic Press, New-York, 1978. | MR 509213 | Zbl 0436.06001
,7. The Möbius function of a partially ordered set, in: Ordered sets, I. Rival éd., D. Reidel Publishing Company, 1982, pp. 555-581. | MR 661306 | Zbl 0491.06004
,8. The Eulerian functions of a group, Quart. J. Math. Oxford Ser., 1936, pp. 134-151. | JFM 62.0082.02
,9. Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinat, Theory, (A) 13, 1972, pp. 7-13. | MR 306064 | Zbl 0248.06003
and ,10. The factorization and representation of lattices, Trans. Amer. Math. Soc., 203, 1975, pp. 185-200. | MR 360386 | Zbl 0302.06011
,11. Enumeration, ranking and unranking binary trees, Computer J., 29, 1986, pp. 171-175. | MR 841678 | Zbl 0585.68066
,12. On the rotation distance in the lattice of binary trees, Inform. Process. Lett., 25, 1987, pp. 369-373. | MR 905781
,13. Some properties of the rotation lattice of binary trees, Computer J., 31, 1988, pp. 564-565. | MR 974656 | Zbl 0654.06008
,14. A distance metric on binary trees using lattice-theoretic measures, Inform. Process. Lett., 34, 1990, pp. 113-116. | MR 1059974 | Zbl 0695.68017
,15. A Hamilton path in the rotation lattice of binary trees, Congr. Numer., 59, 1987, pp. 313-318. | MR 944971 | Zbl 0647.05038
and ,16. On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2, 1964, pp. 340-368 | MR 174487 | Zbl 0121.02406
,17. Rotation distance, triangulations and hyperbolic geometry, Journal of the American Mathematical Society, 1988, pp. 647-681. | MR 928904 | Zbl 0653.51017
, and ,