An algorithm to compute the möbius function of the rotation lattice of binary trees
Pallo, J. M.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 27 (1993), p. 341-348 / Harvested from Numdam
Publié le : 1993-01-01
@article{ITA_1993__27_4_341_0,
     author = {Pallo, J. M.},
     title = {An algorithm to compute the m\"obius function of the rotation lattice of binary trees},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {27},
     year = {1993},
     pages = {341-348},
     mrnumber = {1238055},
     zbl = {0779.68066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1993__27_4_341_0}
}
Pallo, J. M. An algorithm to compute the möbius function of the rotation lattice of binary trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 27 (1993) pp. 341-348. http://gdmltest.u-ga.fr/item/ITA_1993__27_4_341_0/

1. M. K. Bennet and G. Birkhoff, Two families of Newman lattices, to appear. | MR 1287019 | Zbl 0810.06006

2. A. Bonnin et J. M. Pallo, A-transformation dans les arbres n-aires, Discrete Math., 45, 1983, pp. 153-163. | MR 704232 | Zbl 0504.68040

3. C. Chameni-Nembua and B. Monjardet, Les treillis pseudocomplémentés finis, Europ. J. Combinatorics, 13, 1992, pp.89-107. | MR 1158803 | Zbl 0759.06010

4. W. Feller, An introduction to probability theory and its applications, John Wiley, New-York, 1957. | MR 88081 | Zbl 0077.12201

5. H. Friedman and D. Tamari, Problèmes d'associativité : une structure de treillis fini induite par une loi demi-associative, J. Combinat. Theory, 2, 1967, pp. 215-242. | MR 238984 | Zbl 0158.01904

6. G. Grätzer, General lattice theory, Academic Press, New-York, 1978. | MR 509213 | Zbl 0436.06001

7. C. Greene, The Möbius function of a partially ordered set, in: Ordered sets, I. Rival éd., D. Reidel Publishing Company, 1982, pp. 555-581. | MR 661306 | Zbl 0491.06004

8. P. Hall, The Eulerian functions of a group, Quart. J. Math. Oxford Ser., 1936, pp. 134-151. | JFM 62.0082.02

9. S. Huang and D. Tamari, Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinat, Theory, (A) 13, 1972, pp. 7-13. | MR 306064 | Zbl 0248.06003

10. G. Markowsky, The factorization and representation of lattices, Trans. Amer. Math. Soc., 203, 1975, pp. 185-200. | MR 360386 | Zbl 0302.06011

11. J. M. Pallo, Enumeration, ranking and unranking binary trees, Computer J., 29, 1986, pp. 171-175. | MR 841678 | Zbl 0585.68066

12. J. M. Pallo, On the rotation distance in the lattice of binary trees, Inform. Process. Lett., 25, 1987, pp. 369-373. | MR 905781

13. J. M. Pallo, Some properties of the rotation lattice of binary trees, Computer J., 31, 1988, pp. 564-565. | MR 974656 | Zbl 0654.06008

14. J. M. Pallo, A distance metric on binary trees using lattice-theoretic measures, Inform. Process. Lett., 34, 1990, pp. 113-116. | MR 1059974 | Zbl 0695.68017

15. D. Roelants Van Baronaigien and F. Ruskey, A Hamilton path in the rotation lattice of binary trees, Congr. Numer., 59, 1987, pp. 313-318. | MR 944971 | Zbl 0647.05038

16. G. C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2, 1964, pp. 340-368 | MR 174487 | Zbl 0121.02406

17. D. D. Sleator, R. E. Tarjan and W. P. Thurston, Rotation distance, triangulations and hyperbolic geometry, Journal of the American Mathematical Society, 1988, pp. 647-681. | MR 928904 | Zbl 0653.51017