On the restricted equivalence for subclasses of propositional logic
Flögel, A. ; Kleine Büning, H. ; Lettmann, T.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 27 (1993), p. 327-340 / Harvested from Numdam
Publié le : 1993-01-01
@article{ITA_1993__27_4_327_0,
     author = {Fl\"ogel, A. and Kleine B\"uning, H. and Lettmann, T.},
     title = {On the restricted equivalence for subclasses of propositional logic},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {27},
     year = {1993},
     pages = {327-340},
     mrnumber = {1238054},
     zbl = {0787.03008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1993__27_4_327_0}
}
Flögel, A.; Kleine Büning, H.; Lettmann, T. On the restricted equivalence for subclasses of propositional logic. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 27 (1993) pp. 327-340. http://gdmltest.u-ga.fr/item/ITA_1993__27_4_327_0/

1. B. Aspvall, M. F. Plass and R. E. Tarjan, A linear-time algorithm for testing the truth of certain quantified boolean formulas, Information Processing letters, 8, 1979, pp. 121-123. | MR 526451 | Zbl 0398.68042

2. S. Van Denneheuvel and K. L. Kwast, Weak equivalence for constraint sets, Proc. IJCAI-91, Sidney, Australie, Vol. 2, 1991, pp. 851-856. | Zbl 0749.68018

3. E. M. Gold, Complexity of automaton identification from given data, unpublished manuscript, 1974.

4. J. N. Hooker, Logical inference and polyhedral projection, to appear in Proc. CSL'91, Springer LNCS, 1991. | MR 1232887 | Zbl 0819.68105

5. H. Kleine Büning, M. Karpinski and A. Flögel, Resolution for quantified boolean formulas, to appear in Information and Cornputation. | MR 1318810 | Zbl 0828.68045

6. L. J. Stockmeyer and A. R. Meyer, World problems requiring exponential time, Proc. 5th Ann. ACM Symp. Theory of Computing, 1973, pp. 1-9. | MR 418518 | Zbl 0359.68050

7. L. J. Stockmeyer, The polynomial-time hierarchy, Theoretical computer Science, 3, 1977, pp. 1-22. | MR 438810 | Zbl 0353.02024

8. G. S. Tseitin, On the complexity of dérivations in propositional calculus, in A. O. Slisenko (ed.): Studies in constructive mathematics and mathematical logic, Consultants bureau, New York, 1970, part II, pp. 115-125. | Zbl 0205.00402