Rebootable and suffix-closed ω-power languages
Le Saëc, B. ; Litovsky, I.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 26 (1992), p. 45-58 / Harvested from Numdam
Publié le : 1992-01-01
@article{ITA_1992__26_1_45_0,
     author = {Le Sa\"ec, B. and Litovsky, I.},
     title = {Rebootable and suffix-closed $\omega $-power languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {26},
     year = {1992},
     pages = {45-58},
     mrnumber = {1155344},
     zbl = {0768.68079},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1992__26_1_45_0}
}
Le Saëc, B.; Litovsky, I. Rebootable and suffix-closed $\omega $-power languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 26 (1992) pp. 45-58. http://gdmltest.u-ga.fr/item/ITA_1992__26_1_45_0/

1. A. Arnold, A Syntactic Congruence for Rational ω-languages, Theoret Comput. Sci., 1985, 39, pp. 333-335. | MR 821211 | Zbl 0578.68057

2. A. Arnold and M. Nivat, Comportements de processus, Rapport interne, L.I.T.P., 1982, pp. 82-12.

3. J. Bertsel and D. Perrin, Theory of Codes, Academic Press, New York, 1985. | MR 797069 | Zbl 0587.68066

4. L. Boasson and M. Nivat, Adherences of Languages, J. Comput. System Sci., 1980, 20, pp. 285-309. | MR 584863 | Zbl 0471.68052

5. J. R. Büchi, On Decision Method in Restricted Second-Order Arithmetics, Proc. Congr. Logic, Method. and Phulos. Sci., Stanford Univ. Press, 1962, p. 1-11. | MR 183636 | Zbl 0147.25103

6. S. Eilenberg, Automata, Languages and Machines, A, Academic Press, New York, 1974. | MR 530382

7. H. Jürgensen and G. Thierrin, On ω-languages Whose Syntactic Monoid is Trivial, J. Comput. Inform. Sci., 1983, 12, pp. 359-365. | MR 741785 | Zbl 0545.68072

8. L. H. Landweber, Decision Problems for ω-Automata, Math. Syst. Theory, 1969, 3, pp. 376-384. | MR 260595 | Zbl 0182.02402

9. M. Latteux and E. Timmeran, Finitely Generated ω-Languages, Inform Process. Lett., 1986, 23, pp. 171-175. | MR 871375 | Zbl 0627.68059

10. R. Linder and L. Staiger, Algebraische Codierungstheorie-Theorie der sequentiellen Codierungen, Akademie-Verlag, Berlin, 1977. | MR 469495 | Zbl 0363.94016

11. I. Litovsky, Générateurs des langages rationnels de mots infinis, Thèse, Univ. Lille-I, 1988.

12. I. Litovsky, and E. Timmerman, On Generators of Rational ω-Power Languages, Theoret. Comput. Sci., 1987, 53, pp. 187-200. | MR 918089 | Zbl 0632.68080

13. R. Macnaughton, Testing and Generating Infinite Sequences by a Finite Automaton, Inform. Control, 1966, 9, pp. 521-530. | MR 213241 | Zbl 0212.33902

14. L. Staiger, A Note on Connected ω-languages, Elektron. Inform. Kybernetik, 1980, 16, 5/6, pp. 245-251. | MR 601279 | Zbl 0452.68085

15. L. Staiger, Finite State ω-Languages, J. Comput. System Sci., 1983, 27, pp. 434-448. | MR 727390 | Zbl 0541.68052

16. L. Saiger, On Infinitary Finite Length Codes, Theore. Inform. Appli. 1986, 20, 4, pp. 483-494. | Numdam | MR 880849 | Zbl 0628.68056

17. L. Staiger, Research in the Theory of ω-Languages, Elektron. Inform. Kybernetik, 1987, 23, 8/9, pp. 415-439. | MR 923334 | Zbl 0637.68095