The topologies of sofic subshifts have computable Pierce invariants
Head, Tom
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 25 (1991), p. 247-254 / Harvested from Numdam
Publié le : 1991-01-01
@article{ITA_1991__25_3_247_0,
     author = {Head, Tom},
     title = {The topologies of sofic subshifts have computable Pierce invariants},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {25},
     year = {1991},
     pages = {247-254},
     mrnumber = {1119043},
     zbl = {0734.68058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1991__25_3_247_0}
}
Head, Tom. The topologies of sofic subshifts have computable Pierce invariants. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 25 (1991) pp. 247-254. http://gdmltest.u-ga.fr/item/ITA_1991__25_3_247_0/

1. F. Blanchard and G. Hansel, Languages and Subshifts, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 138-146, Lectures Notes in Comput. Sci., 192, Springer-Verlag, 1985. | MR 814739 | Zbl 0571.68059

2. L. Boasson and M. Nivat, Adherences of Languages, J. Comput. Syst. Sci., 1980, 20, pp. 285-309. | MR 584863 | Zbl 0471.68052

3. T. Head, The Adherences of Languages as Topological Spaces, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 147-163, Lecture Notes in Comput. Sci., 192, Springer-Verlag 1985. | MR 814740 | Zbl 0571.68057

4. T. Head, The Topological Structure of Adherences of Regular Languages, RAIRO, Inform. Théor. Appl., 1986, 20, pp. 31-41. | Numdam | MR 849963 | Zbl 0608.68066

5. T. Head, The Topological Structure of the Space of Unending Paths of a Graph, Congr. Numer., 1987, 60, pp. 131-140. | MR 945225 | Zbl 0645.05037

6. R. S. Pierce, Existence and Uniqueness Theorems for Extensions of Zero-Dimensional Metric Spaces, Trans. Amer. Math. Soc., 1970, 148, pp. 1-21. | MR 254804 | Zbl 0194.54801

7. R. S. Pierce, Compact Zero-Dimensional Metric Spaces of Finite Type, Mem. Amer. Math. Soc, No. 130, Providence, Rhode Island, 1972. | MR 357268 | Zbl 0253.54028

8. B. Weiss, Subshifts of Finite Type and Sofic Systems, Monatsh. Math., 1973, 77, pp. 462-474. | MR 340556 | Zbl 0285.28021