Tours de Hanoï et automates
Allouche, J.-P. ; Dress, F.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 24 (1990), p. 1-15 / Harvested from Numdam
@article{ITA_1990__24_1_1_0,
     author = {Allouche, Jean-Paul and Dress, F.},
     title = {Tours de Hano\"\i\ et automates},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {24},
     year = {1990},
     pages = {1-15},
     mrnumber = {1060463},
     zbl = {0701.68036},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/ITA_1990__24_1_1_0}
}
Allouche, J.-P.; Dress, F. Tours de Hanoï et automates. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 24 (1990) pp. 1-15. http://gdmltest.u-ga.fr/item/ITA_1990__24_1_1_0/

1. A. Aho, J. Hopcroft et J. Ullmann, The Design and Analysis of Computers Algorithms, Addison-Wesley, Reading, MA, 1974, | MR 413592 | Zbl 0326.68005

2. J. Arsac, Le construction de programmes structurés, Dunod, Paris, 1977. | Zbl 0451.68014

3. J. Arsac, Les bases de la programmation, Dunod, Paris, 1983. | Zbl 0624.68004

4. J. Arsac, Jeux et casse-tête à programmer, Dunod, Paris, 1985.

5. M. D. Atkinson, The Cyclic Towers of Hanoï, Inform. Process. Lett., vol. 13, 1981, p. 118-119. | MR 645457 | Zbl 0467.68083

6. W. R. Ball, Mathematical Recreations and Essays, McMillan, London, 1892. Voir aussi

W. R. Ball et H. S. M. Coxeter, Mathematical Recreations and Essays, University of Toronto Press, Toronto, 1974, p. 316-317. | MR 351741

7. D. T. Barnard, The Towers of Hanoï : an Exercise in Non Recursive Algorithm Development, Technical Report 80-103, Dept. of Computing and Information Science, Queen's University, 1980.

8. Br. A. Brousseau, Towers of Hanoï with More Pegs, J. Recreat. Math., vol. 8, (3), 1976, p. 165-176. | Zbl 0332.05003

9. P. Buneman et L. Levy, The Towers of Hanoï Problem, Inform. Process. Lett., vol. 10, 1980, p. 243-244. | MR 585392 | Zbl 0439.05010

10. G. Christol, T. Kamae, M. Mendès France et G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France, vol. 108, 1980, p. 401-419. | Numdam | MR 614317 | Zbl 0472.10035

11. N. Claus (anagramme de Lucas), La tour de Hanoï, jeu de calcul, Revue Science et Nature, vol. 1, n° 8, 1884, p. 127-128.

12. A. Cobham, Uniform Tag Sequences, Math. Syst. Theory, vol. 6, 1972, p. 164-192. | MR 457011 | Zbl 0253.02029

13. P. Cull et E. Ecklund, Towers of Hanoï and Analysis of Algorithms, Amer. Math. Monthly, vol. 92, (6), June/July 1985. | MR 795250 | Zbl 0589.90086

14. H. E. Dudeney, The Canterbury Puzzles, Thos. Nelson & Sons, 1919, réédition Dovers Publications Ltd, New York, 1958.

15. J. Engelfriet, The Trees of Hanoï, 1981, preprint.

16. M. C. Er, A Representation Approach to the Towers of Hanoï Problem, The Comput. J., 1982, p. 442-447. | Zbl 0493.90100

17. M. C. Er, An Iterative Solution to the Cyclic Towers of Hanoï Problem, Technical Report, Dept. of Computing Science, University of Wollogang, 1982.

18. M. C. Er, The Cyclic Towers of Hanoï : a Generalization, Technical Report, Dept. of Computing Science, University of Wollogang, 1982.

19. M. C. Er, A Generalization of the Cyclic Towers of Hanoï, Technical Report, Dept. of Computing Science, University of Wollogang, 1982.

20. M. C. Er, Towers of Hanoï with Black and White Discs, J. Inform. Optim. Sci., vol. 6, (1), 1985, p. 87-93. | MR 793864

21. M. C. Er, The Towers of Hanoï and Binary Numerals, J. Inform. Optim. Sci., vol. 6, (2), 1985, p. 147-152. | MR 796981 | Zbl 0578.68054

22. M. C. Er, The Complexity of the Generalised Cyclic Towers of Hanoï, J. Algorithms, vol. 6, (3), 1985, p. 351-358. | MR 800725 | Zbl 0576.68036

23. J.-C. Fournier, Pour en finir avec la dérécursivation du problème des tours de Hanoï, Actes Journée A.F.C.E.T. Combinatoire, Lyon-I, 1985.

24. J. S. Frame et B. M. Stewart, Solution of Problem n° 3918, Amer. Math. Monthly, vol. 48, 1941, p. 216-219. | MR 1525110

25. M. Gardner, Mathemaiical Puzzles and Diversions, Simon & Schuster, New York, 1958, p. 55-62.

26. M. Gardner, Mathematical Games : the CuriousPropertiesof the Gray Code and How it Can Be Used to Solve Puzzles, Sci. Amer., août 1972, p. 106-109.

27. C. Gerety et P. Cull, Time Complexity of the Towers of Hanoï Problem, SIGACT News, vol. 18, (1), 1986. | Zbl 0621.68029

28. J. Hardouin-Duparc, Génération de mots par des piles d'automates, 1985, preprint.

29. P. J. Hayes, A Note on the Towers of Hanoï Problem, The Comput. J., 1977, p. 282-285. | Zbl 0362.68057

30. K. Jacobs et M. Keane, On 0-1 Sequences of Toeplitz Type, Z. Warsch. Geb., vol. 13, 1969, p. 123-131. | MR 255766 | Zbl 0195.52703

31. M. S. Krishnamoorthy et S. Biswas, The Generalized Towers of Hanoï (preprint), 1978.

32. I. Lavallée, Note sur le problème des tours de Hanoï, Rev. Roumaine Math. pures et appl., vol. 30, 1985, p. 433-438. | MR 802766 | Zbl 0577.05010

33. B. Meyer et C. Baudouin, Méthodes de programmation, Eyrolles, Paris, 3e édition, 1984. | Zbl 0407.68002

34. S. Minker, Three Variations on the Towers of Hanoï Problem, S. M. Thesis, University of Pennsylvania, 1983.

35. H. Partsch et P. Pepper, A Family of Rules for Recursion Removal, 1986, preprint. | MR 443407

36. G. Rauzy, Cours de D.E.A. (communication privée), 1986.

37. J. S. Rohl, Recursion via Pascal, Cambridge University Press, 1984. | Zbl 0547.68003

38. T. Roth, The Tower of Brahma Revisited, J. Recreat. Math., vol. 7, n° 2, 1974, p. 116-119.

39. A. Sainte-Lague, Avec des nombres et des lignes, Vuibert, Paris, 1942, p. 71-78.

40. F. Schuh, The Master Book of Mathematical Recreations, Dover Publications, Inc., New York, 1968, p. 119-121. | Zbl 0191.27406

41. T. R. Walsh, The Towers of Hanoï Revisited: Moving the Rings by Counting the Moves, Inform. Process. Lett., vol. 15, 1982, p. 64-67. | MR 675870 | Zbl 0487.90099

42. D. Wood, The Towers of Brahma and Hanoï Revisited, J. Recreat. Math., vol. 14, n° 1, 1981, p. 17-24. | MR 629340 | Zbl 0486.05014