Non recursive functions have transcendental generating series
Cucker, Felipe ; Gabarró, Joaquim
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 23 (1989), p. 445-448 / Harvested from Numdam
Publié le : 1989-01-01
@article{ITA_1989__23_4_445_0,
     author = {Cucker, Felipe and Gabarr\'o, Joaquim},
     title = {Non recursive functions have transcendental generating series},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {23},
     year = {1989},
     pages = {445-448},
     mrnumber = {1036695},
     zbl = {0683.03023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1989__23_4_445_0}
}
Cucker, Felipe; Gabarró, Joaquim. Non recursive functions have transcendental generating series. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 23 (1989) pp. 445-448. http://gdmltest.u-ga.fr/item/ITA_1989__23_4_445_0/

1. J. M. Autebert, Ph. Flajolet and J. Gabarró, Prefixes of Infinite Words and Unambiguous Context-Free Languages, Inf. Proc. Letters, Vol. 25, 1987, pp. 211-216. | MR 896136 | Zbl 0653.68076

2. N. Chomsky and M. P. Schutzenberger, The Algebraic Theory of Context-Free Languages, in P. BRAFFORD and D. HIRSHBERG Eds., Computer Programming and Formal Systems, North-Holland, Amsterdam, 1963, pp. 118-161. | MR 152391 | Zbl 0148.00804

3. Ph. Flajolet, Ambiguity and Transcendensce, in Proc. I.C.A.L.P.'85, Lect. Notes in Comp. Science, Vol. 194, 1985, pp. 179-188. | MR 819253 | Zbl 0571.68058

4. H. G. Rice, Recursive Real Numbers, Proc. Amer. Math. Soc, Vol. 5, 1954, pp. 784-791. | MR 63328 | Zbl 0058.00602

5. J. Walker, Algebraic Curves, Dover Publ., 1950, Reprinted by Springer Verlag. | Zbl 0103.38202