Polygon placement under translation and rotation
Avnaim, Francis ; Boissonnat, Jean-Daniel
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 23 (1989), p. 5-28 / Harvested from Numdam
Publié le : 1989-01-01
@article{ITA_1989__23_1_5_0,
     author = {Avnaim, Francis and Boissonnat, Jean-Daniel},
     title = {Polygon placement under translation and rotation},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {23},
     year = {1989},
     pages = {5-28},
     mrnumber = {990065},
     zbl = {0665.68037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1989__23_1_5_0}
}
Avnaim, Francis; Boissonnat, Jean-Daniel. Polygon placement under translation and rotation. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 23 (1989) pp. 5-28. http://gdmltest.u-ga.fr/item/ITA_1989__23_1_5_0/

1. F. Avnaim and J. D. Boissonnat, Simultaneous Containment of Several Polygons, 3rd ACM Symp. on Computational Geometry, Waterloo, June 1987.

2. F. Avnaim, J. D. Boissonnat and B. Faverjon, A Practical Exact Motion Planning Algorithm for Polygonal Objects Amidst Polygonal Obstacles, I.E.E.E. Conf. on Robotics and Automation, Philadelphia, 1988.

3. A. Albano and G. Sapuppo, Optimal Allocation of Two-Dimensional Irregular Shapes Using Heuristic Search Methods, I.E.E.E. Trans. on Systems, Man and Cybern., Vol. SMC-10, No. 5, May 1980.

4. B. S. Baker, S. J. Fortune and S. R. Mahaney, Inspection by Polygon Containment, 22th Allerton Annual Conf. on Communications, Control and Computing, 1984, pp. 91-100.

5. M. Berger, Géométrie, Formes quadratiques, coniques et quadriques, CEDIC/Fernand Nathan, Vol. 4, 1978. | Zbl 0423.51002

6. B. Chazelle, The polygon containment problem, in Advances in computer research, Vol. 1, F. P. Preparata, ed., J. A. Press, pp. 1-32.

7. S. J. Fortune, Fast Algorithms for Polygon Containment, Automata, Languages and Programming, in Lecture Notes in Computer Science, 194, Springer Verlag, pp. 189-198. | MR 819254 | Zbl 0571.68029

8. L. Guibas, L. Ramshaw and G. Stolfi, A Kinematic Framework for Computational Geometry, Proc. I.E.E.E. Symp. on Foundations of Comput. Sci., 1983, pp. 74-123. | Zbl 0586.68059

9. K. Kedem and M. Sharir, An Efficient Motion Planning Algorithm for a Convex Polygonal Object in 2-dimensional Polygonal Space, Tech. Rept. No. 253, Comp. Sci. Dept., Courant Institute, Oct. 1986.

10. D. Leven and M. Sharir, On the Number of Critical free Contacts of a Convex Polygonal Object Moving in 2-D Polygonal Space, Discrete and Computational Geometry, Vol. 2, No. 3, 1987. | MR 892172 | Zbl 0616.52009

11. T. Ottman, P. Widmayer and D. Wood, A fast Algorithm for Boolean Mask Operations, Computer Vision, Graphics and Image Processing, Vol. 30, 1985, pp. 249-268. | Zbl 0622.68045

12. F. P. Preparata and M. I. Shamos, Computational Geometry: an Introduction, Springer Verlag, 1985. | MR 805539 | Zbl 0759.68037

13. J. T. Schwartz and M. Sharir, On the Piano Mover's Problem I. The Case of a two Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 345-398. | MR 697469 | Zbl 0554.51007

14. S. Sifrony and M. Sharir, A New Efficient Motion Planning Algorithm for a Rod in Two-Dimensional Polygonal Space, Algorithmica, Vol. 2, 1987, pp. 367-402. | MR 918360 | Zbl 0643.68049