Right and left invertibility in λ-β-calculus
Margaria, I. ; Zacchi, M.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 17 (1983), p. 71-88 / Harvested from Numdam
Publié le : 1983-01-01
@article{ITA_1983__17_1_71_0,
     author = {Margaria, I. and Zacchi, M.},
     title = {Right and left invertibility in $\lambda - \beta $-calculus},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {17},
     year = {1983},
     pages = {71-88},
     mrnumber = {701989},
     zbl = {0523.03010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1983__17_1_71_0}
}
Margaria, I.; Zacchi, M. Right and left invertibility in $\lambda - \beta $-calculus. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 17 (1983) pp. 71-88. http://gdmltest.u-ga.fr/item/ITA_1983__17_1_71_0/

1. H. P. Barendregt, The Lambda Calculus, its Sintax and Semantics, North-Holland, Amsterdam, 1981. | MR 622912 | Zbl 0467.03010

2. J. Bergstra and J. W. Klop, Invertible Terms in the Lambda Calculas, Theor., Comp. Sci., vol 9, 1980, p. 27-38. | MR 535122

3. C. Böhm, Alcune proprietà délie formefi β-η-normalinel λ-k calcolo. Pubblicazioni dell'Istituto per le Applicazioni del Calcolo, n. 696, Roma, 1968.

4. C. Böhm and M. Dezani-Ciancaglini, Combinatorial problems, combinator equations and normal forms, Springer L. N. C. S., n° 14, 1974, p. 185-199. | MR 429500 | Zbl 0309.68037

5. A. Church, Combinatory logic as a semigroup (abstract), Bull. Amer. Math. Soc., vol. 43, 1937, p. 333.

6. A. Church, The Calculi of Lambda Conversion, Princeton University Press, Princeton, 1941. | JFM 67.0041.01 | MR 5274 | Zbl 0026.24205

7. H. B. Curry and R. Feys, Combinatory Logic, vol. 1, North-Holland, Amsterdam, 1958. | MR 94298 | Zbl 0081.24104

8. M. Dezani-Ciancaglini, Pattern-Matching Problems inside λ-β-η calculus, Proceedings Informatica 76, Bied, 1976.

9. M. Dezani-Ciancaglini, Characterization of normal forms possessing inverse in the ʋ-β-η calculus, Theor. Comput. Sci., vol. 2, 1976, p. 323-337. | MR 444444 | Zbl 0368.02028

10. J. J. Lévy, An algebraic interpretation of the λ-β-k-Calculus and an application of a labelled λ-Calculus, Theor. Comput. Sci., vol. 2, 1976, p. 97-114. | MR 409129 | Zbl 0335.02016

11. C. P. Wadsworth, The relation between computational and denotational properties for Scott's D√-models of the lambda-calculus, SIAM J. Comput., vol. 5, 1976, p. 488-521. | MR 505308 | Zbl 0346.02013