Verschränkte homomorphismen formaler sprachen
Hotz, Günter
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 14 (1980), p. 193-208 / Harvested from Numdam
Publié le : 1980-01-01
@article{ITA_1980__14_2_193_0,
     author = {Hotz, G\"unter},
     title = {Verschr\"ankte homomorphismen formaler sprachen},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {14},
     year = {1980},
     pages = {193-208},
     mrnumber = {581677},
     zbl = {0442.68080},
     language = {de},
     url = {http://dml.mathdoc.fr/item/ITA_1980__14_2_193_0}
}
Hotz, Günter. Verschränkte homomorphismen formaler sprachen. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 14 (1980) pp. 193-208. http://gdmltest.u-ga.fr/item/ITA_1980__14_2_193_0/

1. E. Cardoza, R. Liptonund A. R. Meyer, Exponential Space Complete Problems for Petri Nets and Commutative Semigroups, 8th Annual A.C.M. Symp. on Theory of Computing, 1976, S. 50-54. | MR 445912 | Zbl 0374.20067

2. R. H. Fox »Free Differential Calculus I«. Derivation in the free Grouping. Ann. of Math., Bd 57, 1953, S. 547-560, | MR 53938 | Zbl 0050.25602

R. H. Fox, »Free Differential Calculus II«. The Isomorphism Problem, Ann. of Math., Bd 59, 1954, S. 196-210. | MR 62125 | Zbl 0055.01704

3. G. Hotz, Eine neue Invariante k. f. Sprachen, Erscheint in Theoretical Computer Science, 1980. | Zbl 0447.68089

4. G. Hotz, Über die Darstellbarheit des syntaktischen Monoides kontextfreier Sprachen, R.A.I.R.O. Informatique théorique, Bd 13, 1979, S. 337-345. | Numdam | MR 556956 | Zbl 0428.68085

5. T. Huynh, Komplexität semilinearer Mengen, Unveröffentlichtes Manuskript.

6. S. Maclane Homology, Springer-Verlag, Berlin, Heidelberg, Göttingen, 1963. | MR 156879 | Zbl 0133.26502

7. R. J. Parikh, On Contextfree Languages, J.Assoc. Comp. Mach., Bd 13, 1966, S. 570-581. | MR 209093 | Zbl 0154.25801

8. E. L. Post Recursive Unsolvability of a Problem of Thue, J. Symbolic Logic, Bd 12, 1947, S. 1-11. | MR 20527 | Zbl 1263.03030