Complexity of theorem-proving procedures : some general properties
Longo, G. ; Venturini Zilli, M.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 8 (1974), p. 5-18 / Harvested from Numdam
Publié le : 1974-01-01
@article{ITA_1974__8_3_5_0,
     author = {Longo, G. and Venturini Zilli, M.},
     title = {Complexity of theorem-proving procedures : some general properties},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {8},
     year = {1974},
     pages = {5-18},
     mrnumber = {375834},
     zbl = {0302.68098},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_1974__8_3_5_0}
}
Longo, G.; Venturini Zilli, M. Complexity of theorem-proving procedures : some general properties. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 8 (1974) pp. 5-18. http://gdmltest.u-ga.fr/item/ITA_1974__8_3_5_0/

[1] Ausiello G., Complexity hounded universal fonctions, Conference Record of the International Symposium on Theory of machines and Computations, Haifa, 1971.

[2] Blum M., A machine independent theory of complexity of recursive fonction, JACM 14, 1967, pp. 322-336. | MR 235912 | Zbl 0155.01503

[3], Bundy A. There is no best proof procedure, ACM SIGART Newsletter, Dec. 1971, pp. 6-7.

[4]Cook S. A., The complexity of theorem-proving procedures, III Annual Symposium on Theory of computation, Ohio, 1971, pp. 151-158. | Zbl 0253.68020

[5] Hartmanis J. and Hopcroft J., An overview of the theory of computational complexity, JACM 18, 1971, pp. 444-475. | MR 288028 | Zbl 0226.68024

[6] Kowalski R. and Kuehner D., Linear resolution with selection fonction, Artificial Intelligence 2, 1971, pp. 227-260. | MR 436677 | Zbl 0234.68037

[7] Lynch N., Recursive approximation to the halting problem, Rep. of the Tufts University, Medford, Masss., Jan. 1973, pp. 15.

[8] Meltzer B., Prolegomena to a Theory of efficiency of proof procedures, in ArtificialIntelligence and Heuristic programs, American Elzevier, 1971, pp. 15-33.

[9] Meyer A. R., An open problem on creative sets, SIGACT News, April 1973, pp. 20.

[10] Rabin M. O., Degrees of difficulty of Computing a fonction and a partial ordering of recursive sets, Tech, report n. 2, Jerusalem, 1960, pp. 18.

[11] Rogers H., Theory of recursive functions and effective computability, McGraw Hill, 1967, pp. 472. | MR 224462 | Zbl 0183.01401