For a Nonclosing Field, Every Algebraic Variety is a Hypersurface, or All of Space. (Short Communication).
Motzkin, Theodore S.
Aequationes mathematicae, Tome 5 (1970), p. 335 / Harvested from Göttinger Digitalisierungszentrum
Publié le : 1970-01-01
EUDML-ID : urn:eudml:doc:182363
@article{GDZPPN002549735,
     title = {For a Nonclosing Field, Every Algebraic Variety is a Hypersurface, or All of Space. (Short Communication).},
     journal = {Aequationes mathematicae},
     volume = {5},
     year = {1970},
     pages = {335-335},
     zbl = {0213.47102},
     url = {http://dml.mathdoc.fr/item/GDZPPN002549735}
}
Motzkin, Theodore S. For a Nonclosing Field, Every Algebraic Variety is a Hypersurface, or All of Space. (Short Communication).. Aequationes mathematicae, Tome 5 (1970) p. 335. http://gdmltest.u-ga.fr/item/GDZPPN002549735/