On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.
Balasubramanian, R. ; Shorey, T.N. ; Langevin, M. ; Waldschmidt, M.
Monatshefte für Mathematik, Tome 121 (1996), p. 295-308 / Harvested from Göttinger Digitalisierungszentrum
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:178727
@article{GDZPPN002489694,
     title = {On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.},
     journal = {Monatshefte f\"ur Mathematik},
     volume = {121},
     year = {1996},
     pages = {295-308},
     zbl = {0859.11012},
     url = {http://dml.mathdoc.fr/item/GDZPPN002489694}
}
Balasubramanian, R.; Shorey, T.N.; Langevin, M.; Waldschmidt, M. On the Maximal Length of Two Sequences of Integers in Arithmetic Progressions with the Same Prime Divisors.. Monatshefte für Mathematik, Tome 121 (1996) pp. 295-308. http://gdmltest.u-ga.fr/item/GDZPPN002489694/