Some Problems of "Partitio numerorum": II Proof that every large number is the sum of at most 21 biquadrates
Hardy, G.H., and J.E. Littlewood
Mathematische Zeitschrift, Tome 10 (1921), p. 14-27 / Harvested from Göttinger Digitalisierungszentrum
Publié le : 1921-01-01
EUDML-ID : urn:eudml:doc:167608
@article{GDZPPN002365758,
     title = {Some Problems of "Partitio numerorum": II Proof that every large number is the sum of at most 21 biquadrates},
     journal = {Mathematische Zeitschrift},
     volume = {10},
     year = {1921},
     pages = {14-27},
     zbl = {48.0142.01},
     url = {http://dml.mathdoc.fr/item/GDZPPN002365758}
}
Hardy, G.H., and J.E. Littlewood. Some Problems of "Partitio numerorum": II Proof that every large number is the sum of at most 21 biquadrates. Mathematische Zeitschrift, Tome 10 (1921) pp. 14-27. http://gdmltest.u-ga.fr/item/GDZPPN002365758/