The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.
Bessaga, C. ; Pelczynski, A.
Mathematica Scandinavica, Tome 27 (1970), p. 132-140 / Harvested from Göttinger Digitalisierungszentrum
Publié le : 1970-01-01
EUDML-ID : urn:eudml:doc:166151
@article{GDZPPN002350564,
     title = {The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.},
     journal = {Mathematica Scandinavica},
     volume = {27},
     year = {1970},
     pages = {132-140},
     zbl = {0215.19804},
     url = {http://dml.mathdoc.fr/item/GDZPPN002350564}
}
Bessaga, C.; Pelczynski, A. The Space of Lebesgue Measurable Functions on the Interval [0,1] is Homeomorphic to the Countable Infinite Product of Lines.. Mathematica Scandinavica, Tome 27 (1970) pp. 132-140. http://gdmltest.u-ga.fr/item/GDZPPN002350564/