Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid.
Tomi, Friedrich ; Ripoll, Jaime
Manuscripta mathematica, Tome 86 (1995), p. 417-434 / Harvested from Göttinger Digitalisierungszentrum
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:156097
@article{GDZPPN002236915,
     title = {Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid.},
     journal = {Manuscripta mathematica},
     volume = {86},
     year = {1995},
     pages = {417-434},
     zbl = {0838.53014},
     url = {http://dml.mathdoc.fr/item/GDZPPN002236915}
}
Tomi, Friedrich; Ripoll, Jaime. Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid.. Manuscripta mathematica, Tome 86 (1995) pp. 417-434. http://gdmltest.u-ga.fr/item/GDZPPN002236915/