Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.
Fiedler, H.
Aequationes mathematicae, Tome 30 (1986), p. 294-299 / Harvested from Göttinger Digitalisierungszentrum
Publié le : 1986-01-01
EUDML-ID : urn:eudml:doc:137165
@article{GDZPPN002036177,
     title = {Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.},
     journal = {Aequationes mathematicae},
     volume = {30},
     year = {1986},
     pages = {294-299},
     zbl = {0625.41004},
     url = {http://dml.mathdoc.fr/item/GDZPPN002036177}
}
Fiedler, H. Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.. Aequationes mathematicae, Tome 30 (1986) pp. 294-299. http://gdmltest.u-ga.fr/item/GDZPPN002036177/