For a Nonclosing Field, Every Algebraic Variety is a Hypersurface, or All of Space.
Motzkin, Theodore S.
Aequationes mathematicae, Tome 5 (1970), p. 312-314 / Harvested from Göttinger Digitalisierungszentrum
Publié le : 1970-01-01
EUDML-ID : urn:eudml:doc:136140
@article{GDZPPN002024829,
     title = {For a Nonclosing Field, Every Algebraic Variety is a Hypersurface, or All of Space.},
     journal = {Aequationes mathematicae},
     volume = {5},
     year = {1970},
     pages = {312-314},
     zbl = {0213.47102},
     url = {http://dml.mathdoc.fr/item/GDZPPN002024829}
}
Motzkin, Theodore S. For a Nonclosing Field, Every Algebraic Variety is a Hypersurface, or All of Space.. Aequationes mathematicae, Tome 5 (1970) pp. 312-314. http://gdmltest.u-ga.fr/item/GDZPPN002024829/