Categories as monoids in Span, Rel and Sup
Kenney, Toby ; Pare, Robert
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 52 (2011), p. 209-240 / Harvested from Numdam
Publié le : 2011-01-01
@article{CTGDC_2011__52_3_209_0,
     author = {Kenney, Toby and Pare, Robert},
     title = {Categories as monoids in Span, Rel and Sup},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {52},
     year = {2011},
     pages = {209-240},
     mrnumber = {2866504},
     zbl = {1242.18003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2011__52_3_209_0}
}
Kenney, Toby; Pare, Robert. Categories as monoids in Span, Rel and Sup. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 52 (2011) pp. 209-240. http://gdmltest.u-ga.fr/item/CTGDC_2011__52_3_209_0/

[1] J. Bénabou. Algèbre élémentaire dans les catégories avec multiplication. C. R. Acad. Sci. Paris, 258:771-774, 1964. | MR 160806 | Zbl 0127.24901

[2] B. Day. On closed categories of functors. In Reports of the Midwest Category Seminar IV, volume 137, pages 1-38. Springer, 1970. | MR 272852 | Zbl 0203.31402

[3] P. J. Freyd and A. Scedrov. Categories, allegories. North-Holland, 1990. | MR 1071176 | Zbl 0698.18002

[4] T. Leinster. Higher Operads, Higher Categories. Number 298 in London Mathematical Society Lecture Notes. Cambridge University Press, 2003. | Zbl 1160.18001

[5] S. Niefield. Constructing quantales and their modules from monoidal categories. Cah. Top. Geo. Diff., 37:163-176, 1996. | Numdam | MR 1394508 | Zbl 0857.06011

[6] P. Resende. Etale groupoids and their quantales. Advances in Mathematics, 208:147-209, 2007. | MR 2304314 | Zbl 1116.06014

[7] K. I. Rosenthal. Relational monoids, multirelations and quantalic recognizers. Cah. Top. Geo. Diff., 38:161-171, 1997. | Numdam | MR 1454161 | Zbl 0877.18001