The periodic table of n-categories II: degenerate tricategories
Cheng, Eugenia ; Gurski, Nick
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 52 (2011), p. 82-125 / Harvested from Numdam
Publié le : 2011-01-01
@article{CTGDC_2011__52_2_82_0,
     author = {Cheng, Eugenia and Gurski, Nick},
     title = {The periodic table of n-categories II: degenerate tricategories},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {52},
     year = {2011},
     pages = {82-125},
     mrnumber = {2839900},
     zbl = {1253.18002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2011__52_2_82_0}
}
Cheng, Eugenia; Gurski, Nick. The periodic table of n-categories II: degenerate tricategories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 52 (2011) pp. 82-125. http://gdmltest.u-ga.fr/item/CTGDC_2011__52_2_82_0/

[1] John Baez and James Dolan. Higher-dimensional algebra and topological quantum field theory. Jour. Math. Phys., 36:6073-6105, 1995. | MR 1355899 | Zbl 0863.18004

[2] John Baez and Laurel Langford. Higher-dimensional algebra IV: 2-tangles. Adv. Math., 180:705-764, 2003. | MR 2020556 | Zbl 1039.57016

[3] C. Balteanu, Z. Fiedorowicz, R. Schwänzl, and R. Vogt. Iterated monoidal categories. Advances in Mathematics, 176:277-349, 2003. | MR 1982884 | Zbl 1030.18006

[4] Michael Batanin. The Eckmann-Hilton argument, higher operads and En-spaces. Adv. Math., 217(1):334-385, 2008. Available via math/0207281. | MR 2365200 | Zbl 1138.18003

[5] Eugenia Cheng and Nick Gurski. The periodic table of n-categories for low dimensions I: degenerate categories and degenerate bicategories. In Batanin, Davydov, Johnson, Lack, and Neeman, editors, Categories in Algebra, Geometry and Mathematical Physics, proceedings of Streetfest, volume 431 of Contemporary Math., pages 143-164. AMS, 2007. E-print 0708.1178. | Zbl 1142.18003

[6] Eugenia Cheng and Nick Gurski. Towards an n-category of cobor disms. Theory and Applications of Categories, 18:274-302, 2007. | MR 2326433 | Zbl 1126.18002

[7] Eugenia Cheng and Aaron Lauda. Higher dimensional categories: an illustrated guide book, 2004. Available via http://www.math.uchicago.edu/~eugenia/guidebook.

[8] Richard Garner and Nick Gurksi. The low-dimensional structures formed by tricategories. Mathematical Proceedings of the Cambridge Philosophical Society, 146:551-589, 2009. | MR 2496344 | Zbl 1169.18001

[9] R. Gordon, A. J. Power, and R. Street. Coherence for tricategories. Memoirs of the American Mathematical Society, 117(558), 1995. | MR 1261589 | Zbl 0836.18001

[10] A. Grothendieck. Pursuing stacks, 2005. Letter to Quillen.

[11] Nick Gurski. An algebraic theory of tricategories. PhD thesis, University of Chicago, June 2006. Available via http://www.math.yale.edu/~mg622/tricats.pdf. | MR 2717302

[12] Nick Gurski. Nerves of bicategories as stratified simplicial sets. Journal of Pure and Applied Algebra, 213(6):927-946, 2009. | MR 2498786 | Zbl 1188.18004

[13] André Joyal and Joachim Kock. Weak units and homotopy 3-types. In Batanin, Davydov, Johnson, Lack, and Neeman, editors, Categories in Algebra, Geometry and Mathematical Physics, proceedings of Streetfest, volume 431 of Contemporary Math., pages 257-276. AMS, 2007. | Zbl 1137.18004

[14] André Joyal and Ross Street. Braided tensor categories. Advances in Mathematics, 102:20-78, 1983. | MR 1250465 | Zbl 0817.18007

[15] Joachim Kock. Weak identity arrows in higher categories. Internat. Math. Res. Papers, 2006:1-54, 2006. | MR 2210659 | Zbl 1158.18008

[16] Steve Lack and Simona Paoli. 2-nerves for bicategories. K-Theory, 38(2):153-175, 2008. E-print math.CT/0607271. | MR 2366560 | Zbl 1155.18006

[17] Tom Leinster. Generalized enrichment for categories and multicategories, 1999. E-print math. CT/9901139. | Zbl 1009.18006

[18] Tom Leinster. Moral degeneracy in the periodic table, 2000. seminar at DPMMS, Cambridge.

[19] Michael Makkai and Marek Zawadowski. 3-computads do not form a presheaf category, 2001. Personal letter to Michael Batanin; also available via http://duch.mimuw.edu.pl/~zawado/Cex.pdf.

[20] Paddy Mccrudden. Balanced coalgebroids. Theory and Applications of Categories, 7(6):71-147, 2000. | MR 1764504 | Zbl 0960.18005

[21] Carlos Simpson. Limits in n-categories, 1997. E-print alg-geom/9708010.

[22] Carlos Simpson. Homotopy types of strict 3-groupoids, 1998. math.CT/9810059.