A note on the penon definition of n-category
Cheng, Eugenia ; Makkai, Michael
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010), p. 205-223 / Harvested from Numdam
Publié le : 2010-01-01
@article{CTGDC_2010__51_3_205_0,
     author = {Cheng, Eugenia and Makkai, Michael},
     title = {A note on the penon definition of n-category},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {51},
     year = {2010},
     pages = {205-223},
     mrnumber = {2731718},
     zbl = {1235.18005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2010__51_3_205_0}
}
Cheng, Eugenia; Makkai, Michael. A note on the penon definition of n-category. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) pp. 205-223. http://gdmltest.u-ga.fr/item/CTGDC_2010__51_3_205_0/

[1] Jean Bénabou. Introduction to bicategories. Lecture notes in mathematics, 47, 1967. | MR 220789

[2] Eugenia Cheng. Monad interleaving: a construction of the operad for Leinster's weak ω -categories, 2005. To appear in Journal of Pure and Applied Algebra; also available via http://www.math.uchicago.edu/~eugenia/interleaving.pdf. | Zbl 1227.18006

[3] Eugenia Cheng and Nick Gurski. The periodic table of n-categories for low dimensions II: degenerate tricategories. E-print 0705.2307, 2007. | Zbl 1142.18003

[4] Eugenia Cheng and Aaron Lauda. Higher dimensional categories : an illustrated guide book, 2004. Available via http://www.math.uchicago.edu/~eugenia/guidebook.

[5] R. Gordon, A. J. Power, and R. Street. Coherence for tricategories. Memoirs of the American Mathematical Society, 117(558), 1995. | MR 1261589 | Zbl 0836.18001

[6] Nick Gurski. Nerves of bicategories as stratified simplicial sets. Preprint (submitted), 2005. | MR 2498786 | Zbl 1188.18004

[7] Nick Gurski. An algebraic theory of tricategories. PhD thesis, University of Chicago, June 2006. Available via http://www.math.yale.edu/~mg622/tricats.pdf. | MR 2717302

[8] Tom Leinster. A survey of definitions of n-category. Theory and Applications of Categories, 10:1-70, 2002. | MR 1883478 | Zbl 0987.18007

[9] Michael Makkai and Marek Zawadowski. 3-computads do not form a presheaf category, 2001. Personal letter to Michael Batanin; also available via http://duch.mimuw.edu.pl/~zawado/Cex.pdf.

[10] Jacques Penon. Approche polygraphique des -catégories non strictes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, XL-1:31-80, 1999. | Numdam | MR 1682571 | Zbl 0918.18006