Representability of the split extension functor for categories of generalized lie algebras
Gray, James Richard Andrew
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010), p. 162-181 / Harvested from Numdam
Publié le : 2010-01-01
@article{CTGDC_2010__51_3_162_0,
     author = {Gray, James Richard Andrew},
     title = {Representability of the split extension functor for categories of generalized lie algebras},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {51},
     year = {2010},
     pages = {162-181},
     mrnumber = {2731214},
     zbl = {1226.18009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2010__51_3_162_0}
}
Gray, James Richard Andrew. Representability of the split extension functor for categories of generalized lie algebras. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) pp. 162-181. http://gdmltest.u-ga.fr/item/CTGDC_2010__51_3_162_0/

[1] F. Borceux, G. Janelidze and G. M. Kelly, Internal object actions, Commentationes Mathematicae Universitatis Carolinae, 46 (2), 2005, 235-255. | MR 2176890 | Zbl 1121.18004

[2] F. Borceux, G. Janelidze, and G.M. Kelly, On the representability of actions in a semi-abelian category, Theory and Applications of Categories, 14 (11), 2005, 244-286. | MR 2182676 | Zbl 1103.18006

[3] D. Bourn and G. Janelidze, Protomodularity, Descent and semidirect products, Theory and Applications of Categories, 4 (2), 1998, 37-46. | MR 1615341 | Zbl 0890.18003

[4] G. Janelidze, Internal crossed modules, Georgian Mathematical Journal, 10 (1), 2003, 99-114. | MR 1990690 | Zbl 1069.18009

[5] S. Lack and S. Paoli, An operadic approach to internal structures, Applied Categorical Structures, 13 (3), 2005, 205-222. | MR 2167790 | Zbl 1145.18301

[6] S. Mac Lane, Categories for the Working Mathematician, Springer Science, New York, (2nd Edition), 1997. | MR 1712872 | Zbl 0232.18001