@article{CTGDC_2010__51_3_162_0, author = {Gray, James Richard Andrew}, title = {Representability of the split extension functor for categories of generalized lie algebras}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, volume = {51}, year = {2010}, pages = {162-181}, mrnumber = {2731214}, zbl = {1226.18009}, language = {en}, url = {http://dml.mathdoc.fr/item/CTGDC_2010__51_3_162_0} }
Gray, James Richard Andrew. Representability of the split extension functor for categories of generalized lie algebras. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) pp. 162-181. http://gdmltest.u-ga.fr/item/CTGDC_2010__51_3_162_0/
[1] Internal object actions, Commentationes Mathematicae Universitatis Carolinae, 46 (2), 2005, 235-255. | MR 2176890 | Zbl 1121.18004
, and ,[2] On the representability of actions in a semi-abelian category, Theory and Applications of Categories, 14 (11), 2005, 244-286. | MR 2182676 | Zbl 1103.18006
, , and ,[3] Protomodularity, Descent and semidirect products, Theory and Applications of Categories, 4 (2), 1998, 37-46. | MR 1615341 | Zbl 0890.18003
and ,[4] Internal crossed modules, Georgian Mathematical Journal, 10 (1), 2003, 99-114. | MR 1990690 | Zbl 1069.18009
,[5] An operadic approach to internal structures, Applied Categorical Structures, 13 (3), 2005, 205-222. | MR 2167790 | Zbl 1145.18301
and ,[6] Categories for the Working Mathematician, Springer Science, New York, (2nd Edition), 1997. | MR 1712872 | Zbl 0232.18001
,