A note on double central extensions in exact maltsev categories
Everaert, Tomas ; Van Der Linden, Tim
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010), p. 143-153 / Harvested from Numdam
Publié le : 2010-01-01
@article{CTGDC_2010__51_2_143_0,
     author = {Everaert, Tomas and Van Der Linden, Tim},
     title = {A note on double central extensions in exact maltsev categories},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {51},
     year = {2010},
     pages = {143-153},
     mrnumber = {2667981},
     zbl = {1215.18013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2010__51_2_143_0}
}
Everaert, Tomas; Van Der Linden, Tim. A note on double central extensions in exact maltsev categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) pp. 143-153. http://gdmltest.u-ga.fr/item/CTGDC_2010__51_2_143_0/

[1] D. Bourn, The denormalized 3 x 3 lemma, J. Pure Appl. Algebra 177 (2003), 113-129. | MR 1954329 | Zbl 1032.18007

[2] D. Bourn and M. Gran, Central extensions in semi-abelian categories, J. Pure Appl. Algebra 175 (2002), 31-44. | MR 1935971 | Zbl 1023.18013

[3] A. Carboni, G. M. Kelly, and M. C. Pedicchio, Some remarks on Maltsev and Goursat categories, Appl. Categ. Struct. 1 (1993), 385-421. | MR 1268510 | Zbl 0799.18002

[4] A. Carboni, M. C. Pedicchio, and N. Pirovano, Internal graphs and internal groupoids in Mal'cev categories, Proceedings of Conf. Category Theory 1991, Montreal, Am. Math. Soc. for the Canad. Math. Soc., Providence, 1992, pp. 97-109. | MR 1192142 | Zbl 0791.18005

[5] T. Everaert, Higher central extensions and Hopf formulae, J. Algebra, to appear, 2008. | MR 2678821

[6] T. Everaert, M. Gran, and T. Van Der Linden, Higher Hopf formulae for homology via Galois Theory, Adv. Math. 217 (2008), 2231-2267. | MR 2388093 | Zbl 1140.18012

[7] M. Gran, Central extensions and internal groupoids in Maltsev categories, J. Pure Appl. Algebra 155 (2001), 139-166. | MR 1801412 | Zbl 0974.18007

[8] M. Gran, Applications of categorical Galois theory in universal algebra, Galois Theory, Hopf Algebras, and Semiabelian Categories (G. Janelidze, B. Pareigis, and W. Tholen, eds.), Fields Institute Communications Series, vol. 43, American Mathematical Society, 2004, pp. 243-280. | MR 2075588 | Zbl 1067.18011

[9] M. Gran and V. Rossi, Galois theory and double central extensions, Homology, Homotopy and Appl. 6 (2004), no. 1, 283-298. | MR 2084589 | Zbl 1064.08004

[10] G. Janelidze, What is a double central extension? (The question was asked by Ronald Brown), Cah. Top. Géom. Diff. Catég. XXXII (1991), no. 3, 191-201. | Numdam | MR 1158108 | Zbl 0762.18003

[11] G. Janelidze, Galois groups, abstract commutators and Hopf formula, Appl. Categ. Struct. 16 (2008), 653-668. | MR 2448819 | Zbl 1226.18003

[12] G. Janelidze and G. M. Kelly, Galois theory and a general notion of central extension, J. Pure Appl. Algebra 97 (1994), 135-161. | MR 1312759 | Zbl 0813.18001

[13] G. Janelidze and G. M. Kelly, Central extensions in Mal'tsev varieties, Theory Appl. Categ. 7 (2000), no. 10, 219-226. | MR 1774075 | Zbl 0956.08002

[14] G. Janelidze and M. C. Pedicchio, Pseudogroupoids and commutators, Theory Appl. Categ. 8 (2001), no. 15, 408-456. | MR 1847039 | Zbl 1008.18006

[15] M. C. Pedicchio, A categorical approach to commutator theory, J. Algebra 177 (1995), 647-657. | MR 1358478 | Zbl 0843.08004

[16] D. Rodelo and T. Van Der Linden, The third cohomology group classifies double central extensions, Theory Appl. Categ. 23 (2010), no. 8, 150-169. | MR 2593390 | Zbl 1328.18019

[17] J. D. H. Smith, Mal'cev varieties, Lecture notes in mathematics, vol. 554, Springer, 1976. | MR 432511 | Zbl 0344.08002