Quasi-equations in locally presentable categories
Adamek, Jiri ; Hebert, Michel
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009), p. 273-297 / Harvested from Numdam
Publié le : 2009-01-01
@article{CTGDC_2009__50_4_273_0,
     author = {Adamek, Jiri and Hebert, Michel},
     title = {Quasi-equations in locally presentable categories},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {50},
     year = {2009},
     pages = {273-297},
     zbl = {1188.18001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2009__50_4_273_0}
}
Adamek, Jiri; Hebert, Michel. Quasi-equations in locally presentable categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) pp. 273-297. http://gdmltest.u-ga.fr/item/CTGDC_2009__50_4_273_0/

[1] J. Adámek, M. Hébert and L. Sousa, The orthogonal subcategory problem and the small object argument, Appl. Categ. Struct. 17 (2009), 211-246. | MR 2506255 | Zbl 1194.18003

[2] J. Adámek, W. Lawvere and J. Rosický, On the duality between varieties and algebraic theories, Alg. Universalis 49 (2003), 35-49. | MR 1978611 | Zbl 1090.18004

[3] J. Adámek, J. Rosický and E. Vitale, Algebraic theories : a categorical introduction to general algebra, manuscript (2008), www.iti.cs.tu-bs.de/~ adamek/book.pdf. | Zbl 1209.18001

[4] J. Adámek and J. Rosický, Locally presentable and accessible categories, Cambridge University Press, 1994. | Zbl 0795.18007

[5] B. Banaschewski and H. Herrlich, Subcategories defined by implications, Houston J. Math 2 (1976), 149-171. | Zbl 0344.18002

[6] F. Borceux and J. Rosický, On von Newmann varieties, Theory Appl. Categ. 13 (2004), 5-26. | MR 2116320 | Zbl 1057.18004

[7] Y. Diers, Catégories localement multiprésentables, Arch. Math. 34 (1980), 344-386. | MR 593951 | Zbl 0432.18006

[8] P. Gabriel and F. Ulmer, Local Präsentierbare Kategorien, Lect. Notes in Math. 221, Springer-Verlag, Berlin 1971. | Zbl 0225.18004

[9] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Springer-Verlag, Berlin 1967. | MR 210125 | Zbl 0186.56802

[10] W. Hatcher, Les identités dans les categories, C.R. Acad. Sc. Paris Série A t.275 (1972), 495-496. | MR 302728 | Zbl 0258.18001

[11] M. Hébert, 𝒦 -purity and orthogonality, Theory Appl. Categ. 12 (2004), 355-371. | MR 2068519 | Zbl 1060.18001

12] M. Hébert, J. Adámek and J. Rosický, More on orthogonality in locally presentable categories, Cahiers Topol. Géom. Differ. Cat. 62 (2001), 51-80. | Numdam | MR 1820765 | Zbl 0981.18007

[13] J. Isbell, Structure of categories, Bull. AMS 72 (1966), 619-655. | MR 206071 | Zbl 0142.25401

[14] C. Lair, Catégories modelables et catégories esquissables, Diagrammes 6 (1981). | Numdam | MR 684535 | Zbl 0522.18008

[15] M. Makkai and R. Paré, Accessible categories : The foundation of categorical model theory, Cont. Math. 104, Amer. Math. Soc., Providence 1989. | MR 1031717 | Zbl 0703.03042

[16] M. Makkai and A. Pitts, Some remarks on locally finitely presentable categories, Trans. Amer. Math. Soc. 299 (1987), 473-496. | MR 869216 | Zbl 0615.18002

[17] J. Macdonald and A. Stone, The tower and regular decomposition, Cahiers Topol. Géom. Diff. 23 (1982), 197-213. | Numdam | MR 667399 | Zbl 0491.18002