Are all cofibrantly generated model categories combinatorial ?
Rosicky, J.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009), p. 233-238 / Harvested from Numdam
Publié le : 2009-01-01
@article{CTGDC_2009__50_3_233_0,
     author = {Rosicky, J.},
     title = {Are all cofibrantly generated model categories combinatorial ?},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {50},
     year = {2009},
     pages = {233-238},
     mrnumber = {2553541},
     zbl = {1182.55016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2009__50_3_233_0}
}
Rosicky, J. Are all cofibrantly generated model categories combinatorial ?. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) pp. 233-238. http://gdmltest.u-ga.fr/item/CTGDC_2009__50_3_233_0/

[1] J. Adámek, H. Herrlich, J. Rosický and W. Tholen, Weak factorization systems and topological functors, Appl. Categ. Structures 10 (2002), 237-249 | MR 1916156 | Zbl 0997.18002

[2] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, Cambridge University Press 1994 | Zbl 0795.18007

[3] D. Dugger, Combinatorial model categories have presentations, Adv. Math. 164 (2001), 177-201 | MR 1870516 | Zbl 1001.18001

[4] J. R. Isbell, Adequate subcategories, Illinois J. Math. 4 (1960), 541-552 | MR 175954 | Zbl 0104.01704

[5] M. Hovey, Model categories, Amer. Math. Soc. 1999 | MR 1650134 | Zbl 0909.55001

[6] G. Raptis, On the cofibrant generation of model categories, J. Homotopy Relat. Struct. (to appear) | MR 2520994 | Zbl 1185.18014

[7] J. Rosický, More on directed colimits of models, Appl. Categ. Structures 2 (1994), 71-76 | MR 1283214 | Zbl 0801.18004

[8] J. Rosický, Generalized Brown representability in homotopy categories, Theory Appl. Categ. 14 (2005), 451-479 | MR 2211427 | Zbl 1091.18002

[9] J. Rosický, On combinatorial model categories, Appl. Categ. Structures 17 (2009), 303-316 | MR 2506258 | Zbl 1175.55013