Klein's group as a borromean object
Guitart, René
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009), p. 144-155 / Harvested from Numdam
Publié le : 2009-01-01
@article{CTGDC_2009__50_2_144_0,
     author = {Guitart, Ren\'e},
     title = {Klein's group as a borromean object},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {50},
     year = {2009},
     pages = {144-155},
     mrnumber = {2535164},
     zbl = {1186.18002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2009__50_2_144_0}
}
Guitart, René. Klein's group as a borromean object. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) pp. 144-155. http://gdmltest.u-ga.fr/item/CTGDC_2009__50_2_144_0/

[1] P. M. Cohn, Universal Algebra, Harper & Row, 1965. | MR 175948 | Zbl 0141.01002

[2] L. E. Dickson, Linear group, Dover, 1958 (first ed. 1900).

[3] W. Dyck, Gruppentheoretische Studien, Math. Ann. 20 (1882), 1-45. | JFM 14.0097.01 | MR 1510147

[4] J. Fresnel, Algèbre des matrices, Hermann, 1997. | Zbl 1072.15001

[5] R. Guitart, Théorie cohomologique du sens, SIC, 8 nov. 2003, Amiens, compte-rendu, 2004-10/Mars 2004, LAMFA-CNRS UMR 6140, 39-47 [version allongée le 9 février 2004, 22 p., à l'url : http://pagesperso-orange.fr/rene.guitart/].

[6] R. Guitart, Moving Logic, from Boole to Galois, Actes du Colloque International "Charles Ehresmann : 100 ans", Amiens 7-9 octobre 2005, Cahiers Top. Géo. Diff. Cat., vol. XLVI-3, 2005, p. 196-198. | Zbl 1076.03046

[7] R. Guitart, Borromean Objects, as examplified by the groupe G168 of the Klein's Quartic, linked with Moving Logic, Summary of a talk given on 06/ 28/ 2008, at the International Category Theory Conference 2008, june 22-28 2008, Université du Littoral Côte d'Opale, Calais, France, abstracts p. 37. See also a diaporama of the talk at http://www-lmpa.univ-littoral.fr/CT08/

[8] A. Hurwitz, Über algebraische Gebilde mit endeutingen Transformationen in sich, Math. Ann. 41 (1893), 403-442. | JFM 24.0380.02 | MR 1510753

[9] A. Kawauchi, A survey of Knot Theory, Birkhäuser, 1996. | MR 1417494 | Zbl 0861.57001

[10] F. Klein, Über die Transformationen siebenter Ordnung der elliptischen Funktionen, Math. Ann. 14 (1879), 428-471. ˜uvres, tome III, p. 90-136. (On the order-seven transformation of elliptic functions, Translated from the German by Silvio Levy, Math. Sci. Res. Inst. Publ. 35, The eightfold way, 287-331, Cambridge Univ. Press, Cambridge, 1999.)

[11] S. Levy, The eightfold way, Cambridge U. Press, 1999. | Zbl 0941.00006

[12] J. Müller ans Ch. Ritzenthaler, On the ring of invariants of ordinary quartic curves in characteristic 2, Univ. Duisburg-Essen, Inst. fin. Exp. Math., Preprint 2 (2004). | MR 2255121