Equational properties of recursive program scheme solutions
Milius, Stefan ; Moss, Lawrence S.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009), p. 23-66 / Harvested from Numdam
Publié le : 2009-01-01
@article{CTGDC_2009__50_1_23_0,
     author = {Milius, Stefan and Moss, Lawrence S.},
     title = {Equational properties of recursive program scheme solutions},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {50},
     year = {2009},
     pages = {23-66},
     mrnumber = {2512521},
     zbl = {1170.68009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2009__50_1_23_0}
}
Milius, Stefan; Moss, Lawrence S. Equational properties of recursive program scheme solutions. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) pp. 23-66. http://gdmltest.u-ga.fr/item/CTGDC_2009__50_1_23_0/

[1] P. Aczel, J. Adámek, S. Milius and J. Velebil, Infinite trees and completely iterative theories: A coalgebraic view, Theoret. Comput. Sci. 300 (2003), 1-45. | MR 1976176 | Zbl 1028.68077

[2] J. Adámek, S. Milius and J. Velebil, Elgot Algebras, Log. Methods Comput. Sci., Vol. 2 (5:4), 31 pp. | MR 2295787 | Zbl 1127.68058

[3] J. Adámek, S. Milius and J. Velebil, Equational Properties of Iterative Monads, submitted. | MR 2744813 | Zbl 1234.68271

[4] M. F. Barnsley, Fractals Everywhere, Academic Press 1988. | MR 977274 | Zbl 0691.58001

[5] S. L. Bloom and Z. Ésik, Iteration Theories: The Equational Logic of Iterative Processes, EATCS Monographs on Theoretical Computer Science, Springer Verlag, 1993. | MR 1295433 | Zbl 0773.03033

[6] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Vol. 51 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1994. | MR 1313497 | Zbl 0843.18001

[7] R. M. Burstall and J. Darlington, A Transformation System for Developing Recursive Programs, J. ACM, 24:1 (1977), 44-67. | MR 451816 | Zbl 0343.68014

[8] B. Courcelle, Fundamental Properties of Infinite Trees, Theoret. Comput. Sci. 25 (1983), no. 2, 95-169. | MR 693076 | Zbl 0521.68013

[9] B. Courcelle, Recursive Applicative Program Schemes. In J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. B, 459-492, Elsevier, Amsterdam, 1990. | MR 1127194 | Zbl 0900.68095

[10] I. Guessarian, Algebraic Semantics. Lecture Notes in Comput. Sci., Vol. 99, Springer Verlag, 1981. | MR 617908 | Zbl 0474.68010

[11] A. J. C. Hurkens, M. Mcarthur, Y. N. Moschovakis, L. S. Moss and G. Whitney, The Logic of Recursive Equations, J. Symbolic Logic 63 (1998), no. 2, 451-478. | MR 1625868 | Zbl 0911.03022

[12] J. Lambek, A Fixpoint Theorem for Complete Categories, Math. Z. 103 (1968), 151-161. | MR 224671 | Zbl 0149.26105

[13] S. Mac Lane, Categories for the Working Mathematician, 2nd edition, Springer Verlag, 1998. | MR 1712872 | Zbl 0906.18001

[14] J. G. Mersch, Equational Logic of Recursive Program Schemes, PhD thesis, Indiana University, Bloomington, 2004. | MR 2706798 | Zbl 1151.68375

[15] J. G. Mersch, Equational Logic of Recursive Program Schemes, in J. Fiadeiro et al (eds.): Algebra and Coalgebra in Computer Science: First International Conference (CALCO 2005), Proceedings, Lecture Notes in Comput. Sci., Vol. 3629, 278-292, Springer Verlag, 2005. | MR 2205253 | Zbl 1151.68375

[16] S. Milius, Completely Iterative Algebras and Completely Iterative Monads, Inform. and Comput. 196 (2005), 1-41. | MR 2114279 | Zbl 1062.68075

[17] S. Milius and L. S. Moss, The Category Theoretic Solution of Recursive Program Schemes, Theoret. Comput. Sci. 366 (2006), 3-59. | MR 2267736 | Zbl 1154.68041

[18] S. Milius and L. S. Moss, The Category Theoretic Solution of Recursive Program Schemes, full version, available at the URL http://www.stefan-milius.eu. | Zbl 1151.68376

[19] S. Milius and L. S. Moss, Corrigendum to [17], Theoret. Comput. Sci. 403 (2008), 409-415. | MR 2441662

[20] L. S. Moss, Parametric Corecursion, Theoret. Comput. Sci. 260 (2001), no. 1-2, 139-163. | MR 1827936 | Zbl 0973.68134

[21] L. S. Moss, Recursion and Corecursion Have the Same Equational Logic, Theoret. Comput. Sci. 294 (2003), no. 1-2, 233-267. | MR 1964782 | Zbl 1029.03018

[22] Y. Moschovakis, The Logic of Functional Recursion. In M. L. Dalla Chiara et al (eds.) Logic and scientific methods, Synthese Lib., 259, Kluwer Acad. Publ., Dordrecht, 1997, 179-207. | MR 1797108 | Zbl 0903.03020

[23] M. Nivat, On the Interpretation of Recursive Polyadic Program Schemes, Symposia Mathematica XV (1975), 255-281. | MR 391563