On synchronized relatively full embeddings and 𝒬-universality
Koubek, V. ; Sichler, J.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 49 (2008), p. 289-306 / Harvested from Numdam
Publié le : 2008-01-01
@article{CTGDC_2008__49_4_289_0,
     author = {Koubek, V\'aclav and Sichler, J.},
     title = {On synchronized relatively full embeddings and $\mathcal {Q}$-universality},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {49},
     year = {2008},
     pages = {289-306},
     mrnumber = {2484228},
     zbl = {1170.08005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2008__49_4_289_0}
}
Koubek, V.; Sichler, J. On synchronized relatively full embeddings and $\mathcal {Q}$-universality. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 49 (2008) pp. 289-306. http://gdmltest.u-ga.fr/item/CTGDC_2008__49_4_289_0/

[1] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1990. | MR 1051419 | Zbl 0695.18001

[2] M. E. Adams, K. V. Adaricheva, W. Dziobiak, and A. V. Kravchenko, Some open questions related to the problem of Birkhoff and Maltsev, Studia Logica 78 (2004), 357-378. | MR 2108035 | Zbl 1105.08007

[3] M. E. Adams and W. Dziobiak, Q-universal quasivarieties of algebras, Proc. Amer. Math. Soc. 120 (1994), 1053-1059. | MR 1172942 | Zbl 0810.08007

[4] M. E. Adams and W. Dziobiak, Finite-to-finite universal quasivarieties are Q-universal, Algebra Universalis 46 (2001), 253-283. | MR 1835799 | Zbl 1059.08002

[5] M. E. Adams and W. Dziobiak, Endomorphism monoids of monadic Boolean algebras, Algebra Universalis 57 (2007), 131-142. | MR 2369177 | Zbl 1132.06009

[6] M. Demlová and V. Koubek, Weaker universalities in semigroup varieties, Novi Sad J. Math 34 (2004), 37-86. | MR 2136462

[7] M. Demlová and V. Koubek, Weak alg-universality and Q-universality of semigroups quasivarieties, Comment. Math. Univ. Carolin. 46 (2005), 257-279. | MR 2176891 | Zbl 1120.20059

[8] M. Demlová and V. Koubek, On universality of semigroup varieties, Arch. Mathematicum 42 (2006), 357-386. | MR 2283018 | Zbl 1152.20046

[9] W. Dziobiak, On subquasivariety lattices of some varieties related with distributive p-algebras, Algebra Universalis 21 (1985), 205-214. | MR 835971 | Zbl 0589.08007

[10] W. Dziobiak, The subvariety lattice of the variety of distributive double p-algebras, Bull. Austral. Math. Soc. 31 (1985), 377-387. | MR 801597 | Zbl 0579.06012

[11] P. Goralčík, V. Koubek and J. Sichler, Universal varieties of (0,1)-lattices, Canad. J. Math. 42 (1990), 470-490. | MR 1062740 | Zbl 0709.18003

[12] G. Grätzer and J. Sichler, On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math. 35 (1970), 639-647. | MR 277442 | Zbl 0208.02602

[13] Z. Hedrlín and J. Lambek, How comprehensive is the category of semigroups ?, J. Algebra 11 (1969), 195-212. | MR 237611 | Zbl 0206.02505

[14] H. Herrlich, Topologische Reflexionen und Coreflexionen, Spriger-Verlag, Berlin, Heidelberg, New York, 1968. | MR 256332 | Zbl 0182.25302

[15] V. Koubek and J. Sichler, Almost universal varieties of monoids, Algebra Universalis 19 (1984), 330-334. | MR 779149 | Zbl 0551.20047

[16] V. Koubek and J. Sichler, Almost ff-universality implies Q-universality, to appear in Applied Categorical Structures. | MR 2545828 | Zbl 1182.08006

[17] L. Kučera, On the monoids of homomorphisms of semigroups with unity, Comment. Math. Univ. Carolin. 23 (1982), 369-381. | MR 664982 | Zbl 0504.18003

[18] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North Holland, Amsterdam, 1980. | MR 563525 | Zbl 0418.18004

[19] M. V. Sapir, The lattice of quasivarieties of semigroups, Algebra Universalis 21 (1985), 172-180. | MR 855737 | Zbl 0599.08014

[20] J. Sichler, Non-constant endomorphisms of lattices, Proc. Amer. Math. Soc. 34 (1972), 67-70. | MR 291032 | Zbl 0249.06003