@article{CTGDC_2008__49_4_289_0, author = {Koubek, V\'aclav and Sichler, J.}, title = {On synchronized relatively full embeddings and $\mathcal {Q}$-universality}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, volume = {49}, year = {2008}, pages = {289-306}, mrnumber = {2484228}, zbl = {1170.08005}, language = {en}, url = {http://dml.mathdoc.fr/item/CTGDC_2008__49_4_289_0} }
Koubek, V.; Sichler, J. On synchronized relatively full embeddings and $\mathcal {Q}$-universality. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 49 (2008) pp. 289-306. http://gdmltest.u-ga.fr/item/CTGDC_2008__49_4_289_0/
[1] Abstract and Concrete Categories, Wiley, New York, 1990. | MR 1051419 | Zbl 0695.18001
, and ,[2] Some open questions related to the problem of Birkhoff and Maltsev, Studia Logica 78 (2004), 357-378. | MR 2108035 | Zbl 1105.08007
, , , and ,[3] Q-universal quasivarieties of algebras, Proc. Amer. Math. Soc. 120 (1994), 1053-1059. | MR 1172942 | Zbl 0810.08007
and ,[4] Finite-to-finite universal quasivarieties are Q-universal, Algebra Universalis 46 (2001), 253-283. | MR 1835799 | Zbl 1059.08002
and ,[5] Endomorphism monoids of monadic Boolean algebras, Algebra Universalis 57 (2007), 131-142. | MR 2369177 | Zbl 1132.06009
and ,[6] Weaker universalities in semigroup varieties, Novi Sad J. Math 34 (2004), 37-86. | MR 2136462
and ,[7] Weak alg-universality and Q-universality of semigroups quasivarieties, Comment. Math. Univ. Carolin. 46 (2005), 257-279. | MR 2176891 | Zbl 1120.20059
and ,[8] On universality of semigroup varieties, Arch. Mathematicum 42 (2006), 357-386. | MR 2283018 | Zbl 1152.20046
and ,[9] On subquasivariety lattices of some varieties related with distributive p-algebras, Algebra Universalis 21 (1985), 205-214. | MR 835971 | Zbl 0589.08007
,[10] The subvariety lattice of the variety of distributive double p-algebras, Bull. Austral. Math. Soc. 31 (1985), 377-387. | MR 801597 | Zbl 0579.06012
,[11] Universal varieties of (0,1)-lattices, Canad. J. Math. 42 (1990), 470-490. | MR 1062740 | Zbl 0709.18003
, and ,[12] On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math. 35 (1970), 639-647. | MR 277442 | Zbl 0208.02602
and ,[13] How comprehensive is the category of semigroups ?, J. Algebra 11 (1969), 195-212. | MR 237611 | Zbl 0206.02505
and ,[14] Topologische Reflexionen und Coreflexionen, Spriger-Verlag, Berlin, Heidelberg, New York, 1968. | MR 256332 | Zbl 0182.25302
,[15] Almost universal varieties of monoids, Algebra Universalis 19 (1984), 330-334. | MR 779149 | Zbl 0551.20047
and ,[16] Almost ff-universality implies Q-universality, to appear in Applied Categorical Structures. | MR 2545828 | Zbl 1182.08006
and ,[17] On the monoids of homomorphisms of semigroups with unity, Comment. Math. Univ. Carolin. 23 (1982), 369-381. | MR 664982 | Zbl 0504.18003
,[18] Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North Holland, Amsterdam, 1980. | MR 563525 | Zbl 0418.18004
and ,[19] The lattice of quasivarieties of semigroups, Algebra Universalis 21 (1985), 172-180. | MR 855737 | Zbl 0599.08014
,[20] Non-constant endomorphisms of lattices, Proc. Amer. Math. Soc. 34 (1972), 67-70. | MR 291032 | Zbl 0249.06003
,