@article{CTGDC_2008__49_1_69_0, author = {Golasi\'nski, Marek and Stramaccia, Luciano}, title = {Weak homotopy equivalences of mapping spaces and Vogt's lemma}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, volume = {49}, year = {2008}, pages = {69-80}, mrnumber = {2412011}, zbl = {1153.55007}, language = {en}, url = {http://dml.mathdoc.fr/item/CTGDC_2008__49_1_69_0} }
Golasiński, Marek; Stramaccia, Luciano. Weak homotopy equivalences of mapping spaces and Vogt's lemma. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 49 (2008) pp. 69-80. http://gdmltest.u-ga.fr/item/CTGDC_2008__49_1_69_0/
[1] Mapping spaces are equivariant absolute extensors, Vestnik Moskov. Univ. Ser. I, Mat. Mekh. (1981), 22-25. | MR 648583 | Zbl 0478.54012
,[2] Equivariant shape, Fund. Math. 127 (1987), 213-224. | MR 917146 | Zbl 0644.55009
and ,[3] Retraction properties of an orbit spaces. II (Russian), Uspekhi Mat. Nauk 48 (1993), no. 6(294), 145-146; translation in Russian Math. Surveys 48 (1993), no. 6. 156-157. | MR 1264160 | Zbl 0832.54019
,[4] A characterization of equivariant absolute extensors and the equivarian Dugundji Theorem, Houston J. Math. Vol 31, No. 2 (2000), 451-462. | MR 2132847 | Zbl 1103.54011
,[5] The equivariant homotopy type of G-ANR'S for compact group actions. Dubrovnik VI - Geométrie Topology 2007, http://atlas-conferences.eom/c/a/u/w/64.htm.
and ,[6] Topology, Ellis Horwood (1988). | MR 984598 | Zbl 0655.55001
,[7] On weak honotopy equivalences between mapping spaces, Topology vol. 37, no. 4 (1998), 709-717. | MR 1607716 | Zbl 0897.55006
and ,[8] Categorical shape theory, World Scientific (1996).
and ,[9] On the categorical shape of functors, Fund. Math. 97 (1977), 157-176. | MR 645375 | Zbl 0368.18002
and ,[10] Kan Extension in Enriched Category Theory, Lecture Notes in Math. 145, Springer-Verlag, Berlin-Heidelberg-New York (1970). | MR 280560 | Zbl 0228.18002
,[11] Strong shape for topological spaces, Trans. Amer. Math. Soc. 323(2) (1991), 765-796. | MR 986690 | Zbl 0754.55009
and ,[12] Function spaces and shape theories, Fund. Math. 171 (2002), 117-154. | MR 1880380 | Zbl 0989.55008
and ,[13] Groupoid enriched categories and homotopy theory, Canad. J. Math. 3 (1983), 385-416. | MR 717131 | Zbl 0546.55026
, ,[14] On categorical shape theory, Cahiers Topologie Géom. Différentialle Catég. 17 (3) (1976), 261-294. | Numdam | MR 439911 | Zbl 0341.55015
,[15] The Whitehead theorem in equivariant shape theory, Glasnik Mat. 234 (44) (1989), 417-425. | MR 1074884 | Zbl 0711.54009
,[16] Some questions of equivariant movability, Glasnik Mat. vol. 39 (59) (2004), 185-198. | MR 2055395 | Zbl 1053.55006
,[17] Categories and Groupoids, Van Nostrand Reinhold Math. St., vol. 32 (1971). | MR 327946 | Zbl 0226.20054
,[18] Localization of Model Categories, Mathematical Surveys and Monographs 99, Am. Math. Soc., Providence, RI (2003). | Zbl 1017.55001
,[19] The immersion approach to triangulation and smooothing, Proc. Adv. St. on Alg. Top., Aarhus Universitet (1970). | MR 281212 | Zbl 0232.57014 | Zbl 0236.57010
,[20] Strong Shape and Homology, Springer Monographs in Mathematics, Springer Verlag, Berlin-Heidelberg-New York (2000). | MR 1740831 | Zbl 0939.55007
,[21] Equivariant CW complexes and shape theory, Tsukuba J. Math. vol. 1 (1989), 157-164. | MR 1003599 | Zbl 0683.55005
,[22] An equivariant shape theory, An. Stint. Univ. "Al. I. Cuza" Iaşi, s. la (1984), 53-67. | MR 777027 | Zbl 0559.55014
,[23] Groupoids and strong shape, Topology and Appl. 153 (2005), 528-539. | MR 2175367 | Zbl 1083.55008
,[24] 2-Categorical aspect of strong shape, Topology and Appl. 153 (2006), 3007-3018. | MR 2248404 | Zbl 1100.54012
,[25] A note on homotopy equivalences, Proc. Amer. Math. Soc. 32 (1972), 627-629. | MR 293632 | Zbl 0241.55009
,[26] Elements of Homotopy Theory, Springer-Verlag, New York, Heidelberg, Berlin (1978). | MR 516508 | Zbl 0406.55001
,