Loading [MathJax]/extensions/MathZoom.js
Weak homotopy equivalences of mapping spaces and Vogt's lemma
Golasiński, Marek ; Stramaccia, Luciano
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 49 (2008), p. 69-80 / Harvested from Numdam
Publié le : 2008-01-01
@article{CTGDC_2008__49_1_69_0,
     author = {Golasi\'nski, Marek and Stramaccia, Luciano},
     title = {Weak homotopy equivalences of mapping spaces and Vogt's lemma},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {49},
     year = {2008},
     pages = {69-80},
     mrnumber = {2412011},
     zbl = {1153.55007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2008__49_1_69_0}
}
Golasiński, Marek; Stramaccia, Luciano. Weak homotopy equivalences of mapping spaces and Vogt's lemma. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 49 (2008) pp. 69-80. http://gdmltest.u-ga.fr/item/CTGDC_2008__49_1_69_0/

[1] S.A. Antonyan, Mapping spaces are equivariant absolute extensors, Vestnik Moskov. Univ. Ser. I, Mat. Mekh. (1981), 22-25. | MR 648583 | Zbl 0478.54012

[2] S.A. Antonyan and S. Mardešić, Equivariant shape, Fund. Math. 127 (1987), 213-224. | MR 917146 | Zbl 0644.55009

[3] S.A. Antonyan, Retraction properties of an orbit spaces. II (Russian), Uspekhi Mat. Nauk 48 (1993), no. 6(294), 145-146; translation in Russian Math. Surveys 48 (1993), no. 6. 156-157. | MR 1264160 | Zbl 0832.54019

[4] S.A. Antonyan, A characterization of equivariant absolute extensors and the equivarian Dugundji Theorem, Houston J. Math. Vol 31, No. 2 (2000), 451-462. | MR 2132847 | Zbl 1103.54011

[5] S.A. Antonyan and E. Elfving, The equivariant homotopy type of G-ANR'S for compact group actions. Dubrovnik VI - Geométrie Topology 2007, http://atlas-conferences.eom/c/a/u/w/64.htm.

[6] R. Brown, Topology, Ellis Horwood (1988). | MR 984598 | Zbl 0655.55001

[7] C. Casacuberta and J.L. Rodriguez, On weak honotopy equivalences between mapping spaces, Topology vol. 37, no. 4 (1998), 709-717. | MR 1607716 | Zbl 0897.55006

[8] J.-M. Cordier and T. Porter, Categorical shape theory, World Scientific (1996).

[9] D. Deleanu and P.J. Hilton, On the categorical shape of functors, Fund. Math. 97 (1977), 157-176. | MR 645375 | Zbl 0368.18002

[10] E.D. Dubuc, Kan Extension in Enriched Category Theory, Lecture Notes in Math. 145, Springer-Verlag, Berlin-Heidelberg-New York (1970). | MR 280560 | Zbl 0228.18002

[11] J. Dydak and S. Nowak, Strong shape for topological spaces, Trans. Amer. Math. Soc. 323(2) (1991), 765-796. | MR 986690 | Zbl 0754.55009

[12] J. Dydak and S. Nowak, Function spaces and shape theories, Fund. Math. 171 (2002), 117-154. | MR 1880380 | Zbl 0989.55008

[13] P.H.H. Fantham, E.J. Moore, Groupoid enriched categories and homotopy theory, Canad. J. Math. 3 (1983), 385-416. | MR 717131 | Zbl 0546.55026

[14] A. Frei, On categorical shape theory, Cahiers Topologie Géom. Différentialle Catég. 17 (3) (1976), 261-294. | Numdam | MR 439911 | Zbl 0341.55015

[15] A. Gaszak, The Whitehead theorem in equivariant shape theory, Glasnik Mat. 234 (44) (1989), 417-425. | MR 1074884 | Zbl 0711.54009

[16] P.S. Gevorgyan, Some questions of equivariant movability, Glasnik Mat. vol. 39 (59) (2004), 185-198. | MR 2055395 | Zbl 1053.55006

[17] P.J. Higgins, Categories and Groupoids, Van Nostrand Reinhold Math. St., vol. 32 (1971). | MR 327946 | Zbl 0226.20054

[18] P.S. Hirschorn, Localization of Model Categories, Mathematical Surveys and Monographs 99, Am. Math. Soc., Providence, RI (2003). | Zbl 1017.55001

[19] R. Lashof, The immersion approach to triangulation and smooothing, Proc. Adv. St. on Alg. Top., Aarhus Universitet (1970). | MR 281212 | Zbl 0232.57014 | Zbl 0236.57010

[20] S. Mardešić, Strong Shape and Homology, Springer Monographs in Mathematics, Springer Verlag, Berlin-Heidelberg-New York (2000). | MR 1740831 | Zbl 0939.55007

[21] T. Matumoto, Equivariant CW complexes and shape theory, Tsukuba J. Math. vol. 1 (1989), 157-164. | MR 1003599 | Zbl 0683.55005

[22] I. Pop, An equivariant shape theory, An. Stint. Univ. "Al. I. Cuza" Iaşi, s. la (1984), 53-67. | MR 777027 | Zbl 0559.55014

[23] L. Stramaccia, Groupoids and strong shape, Topology and Appl. 153 (2005), 528-539. | MR 2175367 | Zbl 1083.55008

[24] L. Stramaccia, 2-Categorical aspect of strong shape, Topology and Appl. 153 (2006), 3007-3018. | MR 2248404 | Zbl 1100.54012

[25] R. Vogt, A note on homotopy equivalences, Proc. Amer. Math. Soc. 32 (1972), 627-629. | MR 293632 | Zbl 0241.55009

[26] G.W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York, Heidelberg, Berlin (1978). | MR 516508 | Zbl 0406.55001