@article{CTGDC_2007__48_2_83_0,
author = {Reyes, Gonzalo E.},
title = {Embedding manifolds with boundary in smooth toposes},
journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
volume = {48},
year = {2007},
pages = {83-103},
mrnumber = {2336732},
zbl = {1128.51005},
language = {en},
url = {http://dml.mathdoc.fr/item/CTGDC_2007__48_2_83_0}
}
Reyes, Gonzalo E. Embedding manifolds with boundary in smooth toposes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 48 (2007) pp. 83-103. http://gdmltest.u-ga.fr/item/CTGDC_2007__48_2_83_0/
[1] , and , Théorie des topos et cohomologie étale des schémas, Séminaire de Géométrie Algèbrique du Bois-Marie 1963-1964. Lecture Notes in Math,vol 269, Springer-Verlag, (1972). | MR 354653 | Zbl 0234.00007
[2] , Sur les modèles de la géométrie différentielle synthétique, Cahiers Top.Geom.Diff, 20, (1979), 234-279. | Numdam | MR 557083 | Zbl 0473.18008
[3] and , Differential Topology, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1974). | MR 348781 | Zbl 0361.57001
[4] , Synthetic Differential Geometry, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney (1981). | MR 649622 | Zbl 1091.51002
[5] , Properties of well-adapted models for synthetic differential geometry, J.Pure Appl. Alg. 20 (1981), 55-70. | MR 596153 | Zbl 0487.18006
[6] and , Models for synthetic integration theory, Math.Scand. 48 (1981) 145-152. | MR 631331 | Zbl 0485.51017
[7] , Basic Concepts of Synthetic Differential Geometry, Kluwer Academic Publishers, Dordrecht, Boston, London (1996). | MR 1385464 | Zbl 0866.58001
[8] , Ideals of differentiable fonctions, Oxford Univ. Press (1966) | Zbl 0177.17902
[9] and , Models for Synthetic Differential Geometry, Springer-Verlag (1991). | MR 1083355
[10] , Elementary Differential Topology, Annals of Math. Studies 54, Princeton (1966). | MR 198479 | Zbl 0161.20201
[11] and , Variétés à bord et topos lisses, Séminaire de Géométrie différentielle synthétique, Rapports de Recherches, Dept. de mathématiques, Université de Montréal (1980).
[12] , Théorie des points proches sur les variétés différentiables, Colloq.Top. et Géom. Diff. Strasbourg 1953, 111-117. | MR 61455 | Zbl 0053.24903