Lax 2-categories and directed homotopy
Grandis, Marco
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 47 (2006), p. 107-128 / Harvested from Numdam
@article{CTGDC_2006__47_2_107_0,
     author = {Grandis, Marco},
     title = {Lax $2$-categories and directed homotopy},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {47},
     year = {2006},
     pages = {107-128},
     mrnumber = {2248226},
     zbl = {05135143},
     zbl = {1170.18301},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2006__47_2_107_0}
}
Grandis, Marco. Lax $2$-categories and directed homotopy. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 47 (2006) pp. 107-128. http://gdmltest.u-ga.fr/item/CTGDC_2006__47_2_107_0/

[1] A. Bauer - L. Birkedal - D.S. Scott, Equilogical spaces, Theoretical Computer Science 315 (2004), 35-59. | MR 2072989 | Zbl 1059.18004

[2] J. Bénabou, Introduction to bicategories, in: Reports of the Midwest Category Seminar, Lecture Notes in Mathematics, Vol. 47, Springer, Berlin 1967, pp. 1-77. | MR 220789

[3] F. Borceux, Handbook of categorical algebra, Vol. 1, Cambridge University Press, Cambridge 1994. | Zbl 0803.18001

[4] M.C. Bunge, Coherent extensions and relational algebras, Trans. Amer. Math. Soc. 197 (1974), 355-390. | MR 344305 | Zbl 0358.18004

[5] A. Burroni, T-categories, Cah. Topol. Géom. Différ. 12 (1971), 215-321. | Numdam | Zbl 0246.18007

[6] E. Cheng - A. Lauda, Higher-dimensional categories: an illustrated guide book, draft version, revised 2004. http://www.math.uchicago.edu/-eugenia/guidebook/index.html

[7] C. Ehresmann, Catégories structurées, Ann. Sci. Ecole Norm. Sup. 80 (1963), 349-425. | Numdam | MR 197529 | Zbl 0128.02002

[8] C. Ehresmann, Catégories et structures, Dunod, Paris 1965. | MR 213410 | Zbl 0192.09803

[9] L. Fajstrup, M. Raussen, E. Goubault, E. Haucourt, Components of the fundamental category, Appl. Categ. Structures 12 (2004), 81-108. | MR 2057412 | Zbl 1078.55020

[10] E. Goubault, Geometry and concurrency: a user's guide, in: Geometry and concurrency, Math. Structures Comput. Sci. 10 (2000), no. 4, pp. 411-425. | MR 1786469 | Zbl 0956.68517

[11] M. Grandis, Directed homotopy theory, I. The fundamental category, Cah. Topol. Géom. Différ. Catég. 44 (2003), 281-316. | Numdam | MR 2030049 | Zbl 1059.55009

[12] M. Grandis, Directed combinatorial homology and noncommutative tori (The breaking of symmetries in algebraic topology), Math. Proc. Cambridge Philos. Soc. 138 (2005), 233-262. | MR 2132167 | Zbl 1068.55004

[13] M. Grandis, Inequilogical spaces, directed homology and noncommutative geometry, Homology Homotopy Appl. 6 (2004), 413-437. | MR 2118494 | Zbl 1079.18001

[14] M. Grandis, The shape of a category up to directed homotopy, Theory Appl. Categ. 15 (2005) (CT2004), No. 4, 95-146. | MR 2210577 | Zbl 1091.55006

[15] M. Grandis, Modelling fundamental 2-categories for directed homotopy, Homology Homotopy Appl., to appear. [Dip. Mat. Univ. Genova, Preprint 527 (2005) http://www.dima.unige.it/-grandis/Shp2.pdf] | MR 2205214 | Zbl 1087.18005

[16] G.M. Kelly, On Mac Lane's conditions for coherence of natural associativities, commutativities, etc., J. Algebra 1 (1964), 397-402. | MR 182649 | Zbl 0246.18008

[17] T. Leinster, Higher operads, higher categories, Cambridge University Press, Cambridge 2004. | MR 2094071 | Zbl 02134022

[18] S. Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), 28-46. | MR 170925 | Zbl 0244.18008

[19] D. Scott, A new category? Domains, spaces and equivalence relations, Unpublished manuscript (1996). http://www.cs.cmu.edu/Groups/LTC/