@article{CTGDC_2006__47_1_29_0, author = {Attal, Romain}, title = {Combinatorial stacks and the four-color theorem}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, volume = {47}, year = {2006}, pages = {29-49}, mrnumber = {2220060}, zbl = {1107.18005}, language = {en}, url = {http://dml.mathdoc.fr/item/CTGDC_2006__47_1_29_0} }
Attal, Romain. Combinatorial stacks and the four-color theorem. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 47 (2006) pp. 29-49. http://gdmltest.u-ga.fr/item/CTGDC_2006__47_1_29_0/
[1] Every planar map is four colourable (Illinois J. Math. 21 (1977), pp. 429-567). | Zbl 0387.05009
and :[2] Combinatorics of non-Abelian gerbes with connection and curvature (Annales de la Fondation Louis de Broglie, vol. 29 n° 4, pp. 609-634; math-ph/0203056). | MR 2146290
:[3] Quantum Gravity (http://www.math.ucr.edu/~miguel/QGravity/QGravity.html).
and :[4] Lie Algebras and the Four Color Theorem (Combinatorica 17-1 (1997) pp. 43-52; q-alg/9606016). | MR 1466574 | Zbl 0880.17005
:[5] On the colouring of maps (Proc. London Math. Soc. 9, p. 148, 1878).
:[6] Analogies between the Langlands Correspondence and Topological Quantum Field Theory (In Functional Analysis on the Eve of the 21 st Century, edited by S. Gindikin et al., Progress in Mathematics 131, Birkhaüser, 1995). | MR 1373001 | Zbl 0858.11062
:[7] An Algebraic Approach to the Planar Coloring Problem (Comm. Math. Phys. 152 (1993), pp. 565-590). | MR 1213302 | Zbl 0769.05039
and :[8] Representation Theory and Noncommutative Harmonic Analysis I (Encyclopaedia of Mathematical Sciences, Volume 22; Springer-Verlag, 1994). | MR 1311487 | Zbl 0805.00006
:[9] Categories for the Working Mathematician (Springer Verlag, 1997). | MR 354798 | Zbl 0232.18001
:[10] Applications of negative dimensional tensors (in Combinatorial Mathematics and its Applications, D. J. A. Welsh, Academic Press, 1971). | MR 281657 | Zbl 0216.43502
:[11] A 2-Categorical Pasting Theorem (J. Algebra 129 (1990), pp. 439-445). | MR 1040947 | Zbl 0698.18005
:[12] The four-colour theorem (J. Comb. Theory (Series B), 70 (1997), pp. 2-44). | MR 1441258 | Zbl 0883.05056
, , , :[13] On the colouring of maps (Proc. Roy. Soc. Edinburgh, pp. 501-503, 1879-80). | JFM 12.0408.02
:[14] Graphs, colourings and the four-colour theorem (Oxford Science Publications, 2002). | MR 1888337 | Zbl 1007.05002
: