Simplicial n-fold monoidal categories model all loop spaces
Fiedorowicz ; Vogt
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 44 (2003), p. 105-148 / Harvested from Numdam
Publié le : 2003-01-01
@article{CTGDC_2003__44_2_105_0,
     author = {Fiedorowicz and Vogt},
     title = {Simplicial $n$-fold monoidal categories model all loop spaces},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {44},
     year = {2003},
     pages = {105-148},
     mrnumber = {1985834},
     zbl = {1052.18002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2003__44_2_105_0}
}
Fiedorowicz; Vogt. Simplicial $n$-fold monoidal categories model all loop spaces. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 44 (2003) pp. 105-148. http://gdmltest.u-ga.fr/item/CTGDC_2003__44_2_105_0/

[1] J.M. Boardman, R.M. Vogt, Homotopy-everything H-spaces, Bull. Amer. Math. Soc. 74 (1968), 1117-1122. | MR 236922 | Zbl 0165.26204

[2] C. Balteanu, Z. Fiedorowicz, R. Schw" Anzl, R.M. Vogt, Iterated monoidal categories, to appear. | MR 1982884 | Zbl 1030.18006

[3] J.-M. Cordier, Sur la notion de diagramme homotopiquement coherent, Cah. Topologie Geom. Differ. 23 (1982), 93-112. | Numdam | MR 648798 | Zbl 0493.55009

[4] J.-M. Cordier and T. Porter, Homotopy coherent category theory, Trans. Am. Math. Soc. 349 (1997), 1-54. | MR 1376543 | Zbl 0865.18006

[5] M. Artin, A. Grothendieck, J.L. Verdier, Théorie des topos et cohomologie étale des schémas, Springer Lecture Notes in Mathematics 269 (1972). | MR 354653

[6] R. Godement, Topologie algébrique et théorie des faisceaux, Paris: Hermann, 1973. | MR 345092 | Zbl 0275.55010

[7] A. Joyal and R. Street, Braided tensor categories, Advances in Math. 102(1993), 20-78. | MR 1250465 | Zbl 0817.18007

[8] C. Kassel, Quantum Groups, Springer-Verlag, 1994. | MR 1321145 | Zbl 0808.17003

[9] D.M. Latch, The uniqueness of homology for the category of small categories, J. Pure and Appl. Algebra 9 (1977), 221-237. | MR 460421 | Zbl 0363.18008

[10] S. Maclane, Categories for the working mathematician, Springer-Verlag, 1971. | MR 354798 | Zbl 0705.18001

[11] J.P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer, 1972. | MR 420610 | Zbl 0244.55009

[12] D.G. Quillen, Higher algebraic K-theory I, Springer Lecture Notes in Math. 341 (1973), 85-147. | MR 338129 | Zbl 0292.18004

[13] R. Street, Two constructions on lax functors, Cahiers Topologie Geometrie Differentielle 13(1972), 217-264. | Numdam | MR 347936 | Zbl 0252.18008

[14] R.W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Phil. Soc. 85(1979), 91-109. | MR 510404 | Zbl 0392.18001

[15] R.W. Thomason, Symmetric monoidal categories model all connective spectra, Theory and Appl. of Categories 1 (1995), 78-118. | MR 1337494 | Zbl 0876.55009

[16] R.M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. 22 (1971), 545-555. | MR 300277 | Zbl 0237.54001

[17] R.M. Vogt, Homotopy limits and colimits, Math. Z. 134 (1973), 11-52. | MR 331376 | Zbl 0276.55006