@article{CTGDC_2003__44_1_39_0, author = {Mackaay, Marco}, title = {A note on the holonomy of connections in twisted bundles}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, volume = {44}, year = {2003}, pages = {39-62}, mrnumber = {1961525}, zbl = {1067.58003}, language = {en}, url = {http://dml.mathdoc.fr/item/CTGDC_2003__44_1_39_0} }
Mackaay, Marco. A note on the holonomy of connections in twisted bundles. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 44 (2003) pp. 39-62. http://gdmltest.u-ga.fr/item/CTGDC_2003__44_1_39_0/
[1] Holonomy and path structures in general relativity and Yang-Mills theory. Int. J. Theor. Phys., 30 (9):1171-1215, 1991. | MR 1122025 | Zbl 0728.53055
[2] D-branes, B-fields and twisted K-theory. J. High Energy Phys., 3, Paper 7, 2000. | MR 1756434 | Zbl 0959.81037
and[3] G-groupoids, crossed modules and the fundamental groupoid of a topological group. Nederl. Akad. Wetensch. Proc. Ser. A79, 38(4):296-302, 1976. | MR 419643 | Zbl 0333.55011
and[4] Loop spaces, characteristic classes and geometric quantization, volume 107 of Progress in Mathematics. Birkhauser, 1993. | MR 1197353 | Zbl 0823.55002
[5] An axiomatic definition of holonomy. Int. J. Math., 5(6):835-848, 1994. | MR 1298997 | Zbl 0816.53016
and[6] On a family of topological invariants similar to homotopy groups. Rend. Ist. Mat. Univ. Trieste, 30(1-2):81-90, 1998. | MR 1704827 | Zbl 0935.55006
and[7] On gerbs. PhD thesis, University of Cambridge, 1998.
[8] D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys., 4(1):127-154, 2000. | MR 1807598 | Zbl 0992.81059
[9] Holonomy and parallel transport for Abelian gerbes. To appear in Adv. Math. Preprint available as math.DG/0007053. | MR 1932333 | Zbl 1034.53051
and[10] Lie groupoids and Lie algebroids in differential geometry. London Mathematical Society Lecture Note Series, 124. Cambridge University Press, Cambridge, 1987. | MR 896907 | Zbl 0683.53029