Isomorphisms and splitting of idempotents in semicategories
Schröder, Lutz
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 41 (2000), p. 143-153 / Harvested from Numdam
Publié le : 2000-01-01
@article{CTGDC_2000__41_2_143_0,
     author = {Schr\"oder, Lutz},
     title = {Isomorphisms and splitting of idempotents in semicategories},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {41},
     year = {2000},
     pages = {143-153},
     mrnumber = {1769341},
     zbl = {0955.18002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_2000__41_2_143_0}
}
Schröder, Lutz. Isomorphisms and splitting of idempotents in semicategories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 41 (2000) pp. 143-153. http://gdmltest.u-ga.fr/item/CTGDC_2000__41_2_143_0/

[1] J. Adámek, H. Herrlich and G.E. Strecker: Abstract and concrete categories, Wiley Interscience, New York, 1990. | MR 1051419 | Zbl 0695.18001

[2] J. Adámek, F.W. Lawvere and J. Rosický: On a duality between varieties and algebraic theories, preprint. | MR 1978611 | Zbl 1090.18004

[3] J. Adámek and J. Rosický: Locally presentable and accessible categories. London Math. Soc. Lect. Note Ser. 189 (1994); Cambridge University Press. | MR 1294136 | Zbl 0795.18007

[4] F. Borceux and D. Dejean: Cauchy completion in category theory, Cahiers Topol. Géom. Diff. 27 (1986), 133-146. | Numdam | MR 850528 | Zbl 0595.18001

[5] C. Ehresmann: Catégories et structures, Dunod, Paris, 1965. | MR 213410 | Zbl 0192.09803

[6] C. Ehresmann and A.C. Ehresmann: Categories of sketched structures, Cahiers Topol. Geom. Diff. 13 (1972), 105-214. | Numdam | MR 323856 | Zbl 0263.18009

[7] P. Gabriel and F. Ulmer: Lokal präsentierbare Kategorien, Springer Lect. Notes Math. 221 (1971). | MR 327863 | Zbl 0225.18004

[8] L. Schröder: Composition graphs and free extensions of categories (in German). PhD thesis, University of Bremen; Logos Verlag, Berlin, 1999. | Zbl 0945.18001

[9] L. Schröder and H. Herrlich: Free adjunction of morphisms, to appear in Appl. Cat. Struct. | MR 1799731 | Zbl 0977.18001

[10] L. Schröder and H. Herrlich: Free Factorizations, to appear in Appl. Cat. Struct. | MR 1866871 | Zbl 1005.18002