Fibrewise exponential laws in a quasitopos
Min, Kyung Chan ; Kim, Young Sun ; Park, Jin Won
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 40 (1999), p. 242-260 / Harvested from Numdam
Publié le : 1999-01-01
@article{CTGDC_1999__40_4_242_0,
     author = {Min, Kyung Chan and Kim, Young Sun and Park, Jin Won},
     title = {Fibrewise exponential laws in a quasitopos},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {40},
     year = {1999},
     pages = {242-260},
     mrnumber = {1734245},
     zbl = {0944.18002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_1999__40_4_242_0}
}
Min, Kyung Chan; Kim, Young Sun; Park, Jin Won. Fibrewise exponential laws in a quasitopos. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 40 (1999) pp. 242-260. http://gdmltest.u-ga.fr/item/CTGDC_1999__40_4_242_0/

[1] J. Aámek and H. Herrlich, Cartesian closed categories, quasitopoi and topological universes, Comment. Math. Univ. Carolinae 27.2 (1986), 235-257. | MR 857544 | Zbl 0601.18003

[2] H.J. Baues, Algebraic Homotopy, Cambridge Univ. Press, (1989). | MR 985099 | Zbl 0688.55001

[3] P.I. Booth, The exponential law of maps, I, Proc. London Math. Soc. (3) 20 (1970), 179-192. | MR 253275 | Zbl 0189.54301

[4] P.I. Booth, The section problem and the lifting problem, Math. Z. 121 (1971), 273-287. | MR 298657 | Zbl 0207.22203

[5] P.I. Booth, The exponential law of maps, II, Math. Z. 121 (1971), 311-319. | MR 298658 | Zbl 0207.22202

[6] P.I. Booth, Local to global properties in the theory of fibrations, Cahiers de Top.et Geo.Diff. Cat., Vol.XXXIV-2 (1993), 127-151. | Numdam | MR 1223656 | Zbl 0782.55006

[7] P.I. Booth, P.R. Heath and R.A. Piccinini, Fibre preserving maps and function spaces, Algebraic topology, Proceedings, Vancouver 1977, Springer Lecture Notes in Math. Vol. 673, 158-167, Springer-Verlag (1978). | MR 517090 | Zbl 0399.55001

[8] P.I. Booth and R. Brown, On the application of fibred mapping spaces to exponential laws for bundles, ex-spaces and other categories of maps, Gen. Top. Appl. 8 (1978), 165-179. | MR 482637 | Zbl 0373.54013

[9] P.I. Booth and R. Brown, Spaces of partial maps, fibred mapping spaces and the compact-open topology, Gen. Top. Appl. 8 (1978), 181-195. | MR 482636 | Zbl 0373.54012

[10] A. Heller, Relative homotopy, (1989) (preprint). | Zbl 0759.55016

[11] H. Herrlich, Topological improvements of categories of structured sets, Top. and its Appl. 27 (1987), 145-155. | MR 911688 | Zbl 0632.54008

[12] L.G. Lewis Jr., Open maps, colimit and a convenient category of fibre spaces, Topology Appl., 19 (1985), 75-89. | MR 786083 | Zbl 0559.18005

[13] K.C. Min and S.J. Lee, Fibrewise convergence and exponential laws, Tsukuba L. Math. Vol.16, No.1 (1992), 53-62. | MR 1178664 | Zbl 0783.18005

[14] K.C. Min, S.J. Lee and J.W. Park, Fibrewise convergence, Comm. K.M.S., 8, No.2 (1992), 335-344.

[15] K.C. Min and L.D. Nel, Intrinsic functional analysis of sequential convergence spaces, Quaestiones Mathematicae 13(1), (1990), 113-122. | MR 1051622 | Zbl 0751.46007

[16] C. Morgan, Characterizations of F-fibrations, Proc. of Amer. math. Soc. Vol.89, No.1 (1983), 169-172. | MR 691302 | Zbl 0542.55014

[17] C. Morgan and R. Piccinini, Fibrations, Expo. Math. 4 (1986), 217-242. | MR 880124 | Zbl 0597.55014

[18] L.D. Nel, Topological universe and smooth Gelfand-Naimark duality. Mathematical Applications of Category Theory, Contemp. Math. 30 (1984), 224-276. | MR 749775 | Zbl 0548.46054

[19] G. Preuß, Some categorical aspects of simplicial complexes, (1987), (preprint). | MR 734652 | Zbl 0535.18007

[20] E.H. Spanier, Algebraic Topology, McGraw-Hill (1966). | MR 210112 | Zbl 0145.43303

[21] N.E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. | MR 210075 | Zbl 0145.43002

[22] R.M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. XXII (1971), 545-555. | MR 300277 | Zbl 0237.54001