Central extensions and reciprocity laws
Brylinski, Jean-Luc
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 38 (1997), p. 193-215 / Harvested from Numdam
Publié le : 1997-01-01
@article{CTGDC_1997__38_3_193_0,
     author = {Brylinski, Jean-Luc},
     title = {Central extensions and reciprocity laws},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {38},
     year = {1997},
     pages = {193-215},
     mrnumber = {1474565},
     zbl = {0886.18003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_1997__38_3_193_0}
}
Brylinski, Jean-Luc. Central extensions and reciprocity laws. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 38 (1997) pp. 193-215. http://gdmltest.u-ga.fr/item/CTGDC_1997__38_3_193_0/

[1] E. Arbarello, C. Deconcini and V. Kac, The infinite wedge representation and the reciprocity law for an algebraic curve, Theta Functions, Proc. Symp. Pure Math. vol 49 Part I, Amer. Math. Soc. (1987), 171-190 | MR 1013132 | Zbl 0699.22028

[2] M.F. Atiyah and R. Bott, Lefschetz fixed point formula for elliptic complexes: II Applications, Ann. Math. 88(1968), 451-491 | MR 232406 | Zbl 0167.21703

[3] J-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Math. vol. 107 (1993) | MR 1197353 | Zbl 0823.55002

[4] L. Jeffrey, D. Phil. Dissertation, Oxford Univ. (1991)

[5] M. Kapranov, Analogies between the Langlands correspondence and topological quantum field theory, Functional Analysis at the Eve of the 21st Century. In Honor of the Eightieth Birthday of I. M. Gelfand vol. I, Progress in Math. vol. 132 Birkhaüser, 119-152 | MR 1373001 | Zbl 0858.11062

[6] B. Kostant, Quantization and Unitary Representations, Part I.: Prequantization,Lecture Notes in Math. vol. 170 (1970), 87-208 | MR 294568 | Zbl 0223.53028

[7] T. Kubota, Topological coverings of SL(2) over a local field, J. Math. Soc. Japan 19 (1967), 114-121 | MR 204422 | Zbl 0166.29603

[8] G. Lion and M. Vergne, The Weil Representation, Maslov Index and Theta Series, Progress in Math. vol. 6, Birkhaiiser (1980) | MR 573448 | Zbl 0444.22005

[9] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semisimples déployés, Ann. Sci. Ec. Norm. Sup. 2 (1969), 1-62 | Numdam | MR 240214 | Zbl 0261.20025

[10] A. Pressley and G. Segal, Loop Groups, Oxford Univ. Press (1986) | MR 900587 | Zbl 0618.22011

[11] J-P. Serre, A course in Arithmetic, Springer Verlag (1973) | MR 344216 | Zbl 0432.10001

[12] R. Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloque Théorie des Groupes Algébriques, CBRM, Bruxelles (1962), 113-127 | MR 153677 | Zbl 0272.20036

[13] J. Tate, Fourier analysis in number fields and Hecke's zeta functions, Ph. D. Dissertation, Princeton Univ. (1950), published in J.W.S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press (1967), 305-347 | MR 217026

[14] A. Weil, Sur certains groupes d'operateurs unitaires, Acta Math. 111 (1976), 143-211 | MR 165033 | Zbl 0203.03305

[15] A. Weinstein, Cohomology of symplectorraorphism groups and critical values of hamiltonians, Math. Z. 201 (1989), 75-82 | MR 990190 | Zbl 0644.57024