ϰ-Lindelöf locales and their spatial parts
Johnson, P. B.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 32 (1991), p. 297-313 / Harvested from Numdam
Publié le : 1991-01-01
@article{CTGDC_1991__32_4_297_0,
     author = {Johnson, P. B.},
     title = {$\varkappa $-Lindel\"of locales and their spatial parts},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {32},
     year = {1991},
     pages = {297-313},
     zbl = {0771.54018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_1991__32_4_297_0}
}
Johnson, P. B. $\varkappa $-Lindelöf locales and their spatial parts. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 32 (1991) pp. 297-313. http://gdmltest.u-ga.fr/item/CTGDC_1991__32_4_297_0/

1 B. Banaschewski and C.J. Mulvey. Stone-Čech compactification of locales I. Houston J. Math. 6 (1980) 301-312. | MR 597771 | Zbl 0473.54026

2 M. Barr and C. Wells. Toposes, Triples and Theories. Grund. Math. Wiss. 278 (Springer Verlag) (1985) 104-112. | MR 771116 | Zbl 0567.18001

3 H. Herrlich. Fortsetzbarkeit stetiger Abbildungen und Kompaktheitsgrad topologischer Räume. Math. Zeitschr. 96 (1967) 228-255. | MR 208560 | Zbl 0149.19501

4 M. Hušek. The Class of κ-compact Spaces is Simple. Math. Zeitschr. 110 (1969) 123-126. | Zbl 0175.49601

5 P.T. Johnstone. Stone Spaces. Cambridge Studies in Advanced Math. 3 (Cambridge University Press) 1982. | MR 698074 | Zbl 0499.54001

6 F.E.J. Linton. Applied Functorial Semantics, II. Spring. Lec. Notes Math. 80 (1969) 54-57. | MR 249485 | Zbl 0181.02901

7 J. Madden and J. Vermeer. Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. 99 (1986) 473-480. | MR 830360 | Zbl 0603.54021