@article{CTGDC_1989__30_1_61_0,
author = {Brown, Ronald and Golasi\'nski, Marek},
title = {A model structure for the homotopy theory of crossed complexes},
journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
volume = {30},
year = {1989},
pages = {61-82},
mrnumber = {1000831},
zbl = {0679.55016},
language = {en},
url = {http://dml.mathdoc.fr/item/CTGDC_1989__30_1_61_0}
}
Brown, Ronald; Golasinski, Marek. A model structure for the homotopy theory of crossed complexes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 30 (1989) pp. 61-82. http://gdmltest.u-ga.fr/item/CTGDC_1989__30_1_61_0/
1 , Algebraic homotopy, Cambridge University Press, Cambridge, 1989. | MR 985099 | Zbl 0688.55001
2 , "The homotopy types of 4-dimensionsal complexes", Preprint, Bonn 1986. | MR 1361886
3 , "Fibrations of groupoids", J. Algebra 15 (1970), 103-132. | MR 271194 | Zbl 0194.02202
4 , "Some non-abelian methods in homotopy theory and homological algebra", Categorical topology, Proc. Conf. on Categorical Topology, Toledo, Ohio 1983, ed. H.L. Bentley et al, Heldermann-Verlag, Berlin (1984), 108-146. | MR 785014 | Zbl 0558.55001
5 , "Non-Abelian cohomology and the homotopy classification of maps", Homotopie algébrique et algèbre locale, Conf. Marseille-Luminy 1982, ed. J.-M.Lemaire et J.-C. Thomas, Astérisque 113-114 (1984), 167-172. | MR 749052 | Zbl 0548.55018
6 , "Coproducts of crossed P-modules: applications to second homotopy groups and to the homology of groups", Topology, 23 (1984), 337-345. | MR 770569 | Zbl 0519.55009
7 & , "The algebra of cubes", J. Pure Appl. Algebra 21 (1981), 233-260. | MR 617135 | Zbl 0468.55007
8 & , "Colimit theorems for relative homotopy groups", J. Pure Appl. Algebra 22 (1981), 11-41. | MR 621285 | Zbl 0475.55009
9 & , "Crossed complexes and non-Abelian extensions", Int. Conf. on Category Theory, Gummersbach (1981), Lecture Notes in Math. 962, Springer (1982), 39-50. | MR 682942 | Zbl 0504.55018
10 & , "Tensor products and homotopies for ω-groupoids and crossed complexes ", J. Pure Appl. Algebra 47 (1987), 1-33. | Zbl 0621.55009
11 & , "The classifying space of a crossed complex" (in preparation). | Zbl 0732.55007
12 & , "The relation between crossed complexes and chain complexes with a groupoid of operators" (in preparation).
13 & , "Identitites among relations", in Low-dimensional Topology, ed. R. Brown & T.L. Thickstun, London Math. Soc. Lecture Notes Series 48, C.U. P. (1982), 153-202. | MR 662431 | Zbl 0485.57001
14 & , Calculus of fractions and homotopy theory, Springer-Verlag, Berlin 1967. | MR 210125 | Zbl 0186.56802
15 , "An interpretation of the cohomology groups Hn(G,M) ", J. Alg. 16 (1970), 307-318. | Zbl 0699.20040
16 , "Pullback functors and crossed complexes", Cahiers de Top. et Géom. Diff. XX (1979), 281-295. | Numdam | MR 557084 | Zbl 0429.18007
17 , "Crossed n-fold extensions and cohomology", Comm. Math. Helv. 55 (1980), 302-314. | MR 576608 | Zbl 0443.18019
18 , "Kan-Bedingungen und abstrakte Homotopietheorie ", Math. Z. 124 (1972), 215-236. | MR 295346 | Zbl 0223.55020
19 & , "Abstract homotopy and simple homotopy theory", U.C.N.W. Pure Maths, Preprint 86.9. | MR 1464944
20 , "Cohomology of groups relative to a variety ", J. Alg. 69, (1979), 319-320. | MR 613866 | Zbl 0468.20044
21 , "Historical note", J. Alg. 69 (1979), 319-320.
22 , "Homotopical algebra", Lecture Notes in Math. 43, Springer (1967). | MR 223432 | Zbl 0168.20903
23 , "An abstract setting for homotopy pushouts and pullbacks", Cahiers de Top. et Géom. Diff. XVIII (1977), 409-429. | Numdam | MR 486054 | Zbl 0378.18008
24 & , "Pullback and pushout squares in a special double category with connection", Cahiers de Top. et Géom. Diff. XXIV (1983). 161-192. | Numdam | MR 710039 | Zbl 0519.18008
25 , "A note on homotopy equivalences", Proc. A.M.S. 32 (1972), 627-62. | MR 293632 | Zbl 0241.55009
26 , "Combinatorial homotopy II", Bull. A. M.S. 55 (1949), 453-469. | MR 30760 | Zbl 0040.38801
27 , "Simple homotopy type", Amer. J. Math. 72 (1950), 1-57. | MR 35437 | Zbl 0040.38901
28 & , "Non-abelian cohomology with coefficients in a crossed complex" (in preparation).