Free, iteratively closed categories of complete lattices
Wand, Mitchell
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 16 (1975), p. 415-424 / Harvested from Numdam
Publié le : 1975-01-01
@article{CTGDC_1975__16_4_415_0,
     author = {Wand, Mitchell},
     title = {Free, iteratively closed categories of complete lattices},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {16},
     year = {1975},
     pages = {415-424},
     mrnumber = {422386},
     zbl = {0336.18007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CTGDC_1975__16_4_415_0}
}
Wand, Mitchell. Free, iteratively closed categories of complete lattices. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 16 (1975) pp. 415-424. http://gdmltest.u-ga.fr/item/CTGDC_1975__16_4_415_0/

1 Bekic H., Definable operations in general algebras and the Theory of Automata and Flowcharts, I.B.M. Vienna, 1969.

2 Reynolds J.C., Notes on a lattice-theoretical approach to the Theory of Computation, Dept. of Systems & Info. Sc., Syracuse University, 1972.

3 Scott D., The lattice of flow diagrams, Oxford U. Comp. Lab., Rep. PRG-3, 1970. | MR 278849

4 Scott D., Data types as lattices, Lecture Notes, Amsterdam, 19, 2.

5 Tarski A., A lattice-theoretical fixpoint theorem and its applications, Pacific J. of Math. 5 (1955), 285-309. | MR 74376 | Zbl 0064.26004

6 Wagner E.G., An algebraic theory of recursive definitions and recursive languages, Proc. 3d ACM Symp. Th. Comp. (1971), 12-23. | Zbl 0252.02048

7 Wand M., A concrete approach to abstract recursive definitions, Automata, Languages & Programming (M. Nivat ed.), North-Holland, 1973, 331-341. | MR 366767 | Zbl 0278.68066

8 Wand M., Mathematical foundations of Formal Language Theory. Project MAC TR-108, M.I.T., Cambridge, Mass. 1973.