Limites enrichies et existence de V-foncteur adjoint
Borceux, Francis
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 16 (1975), p. 395-408 / Harvested from Numdam
@article{CTGDC_1975__16_4_395_0,
     author = {Borceux, Francis},
     title = {Limites enrichies et existence de $V$-foncteur adjoint},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     volume = {16},
     year = {1975},
     pages = {395-408},
     mrnumber = {498791},
     zbl = {0329.18013},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/CTGDC_1975__16_4_395_0}
}
Borceux, Francis. Limites enrichies et existence de $V$-foncteur adjoint. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 16 (1975) pp. 395-408. http://gdmltest.u-ga.fr/item/CTGDC_1975__16_4_395_0/

[1] F. Borceux, When is Ω a cogenerator in a topos? Cab. Topo. et Géom. Diff. XV-4 (1974). | Numdam | Zbl 0311.18006

[2] F. Borceux and G.M. Kelly, A notion of limit for enriched categories, Bull. Austr. Math. Soc. 12 (1975), 49-72. | MR 369477 | Zbl 0329.18011

[3] B. Day, On closed categories of functors, Lect. Notes in Math. 137, Springer (1970), 1-38. | MR 272852 | Zbl 0203.31402

[4] B. Day and G.M. Kelly, Enriched functor categories, Lect. Notes in Math. 106, Springer (1969), 178-191. | MR 255633 | Zbl 0214.03202

[5] E. Dubuc, Kan extensions in enriched category theory, Lect. Notes in Math. 145, Springer (1970). | MR 280560 | Zbl 0228.18002

[6] S. Eilenberg and G.M. Kelly, Closed categories. Proc. Conf. on Categ. Alg., La Jolla 1965, Springer (1966). 421-562. | MR 225841 | Zbl 0192.10604

[7] F. Foltz, Produit tensoriel généralisé, Cahiers Topo. et Géom. diff. X-3 (1968), 301-331. | Numdam | MR 244338 | Zbl 0191.01304

[8] P. Freyd, Algebra valued functors in general categories and tensor products in particular, Colloq. Math. 14 (1966). | MR 195920 | Zbl 0144.01003

[9] R. Lavendhomme, Limites relatives, Math. Zeit. 122 (1971), 275-284. | MR 288161 | Zbl 0224.18004

[10] H. Schubert, Categories, Springer, 1972. | MR 349793 | Zbl 0253.18002