@article{CTGDC_1975__16_1_3_0, author = {Borceux, Francis}, title = {When is $\Omega $ a cogenerator in a topos ?}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, volume = {16}, year = {1975}, pages = {3-15}, zbl = {0311.18006}, mrnumber = {382393}, language = {en}, url = {http://dml.mathdoc.fr/item/CTGDC_1975__16_1_3_0} }
Borceux, Francis. When is $\Omega $ a cogenerator in a topos ?. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 16 (1975) pp. 3-15. http://gdmltest.u-ga.fr/item/CTGDC_1975__16_1_3_0/
[1] A notion of limit for enriched categories, Bul. Austr. Math. Soc. 12 (1975), 49-72. | MR 369477 | Zbl 0329.18011
and ,[2] Closed categories, Proc. Conf. on Cat. Alg., La Jolla (1965). | MR 225841 | Zbl 0192.10604
and ,[3] Adjoint functors and triples, Ill. J. of Math. V-2 (1965), 381-398. | MR 184984 | Zbl 0135.02103
and ,[4] Some aspects of topoi, Bull. of the Austr. Math. Soc. 7-1 (1972), 1-76. | MR 396714 | Zbl 0252.18001
,[5] Boolean topoi and the theory of sets, J. Pure and App. Alg. (Oct. 1972). | MR 319757 | Zbl 0245.18001
,[6] Sheaf theory and the continuum hypothesis, Proc. of the Halifax Conf. on Category theory, intuitionistic Logic and Algebraic Geometry, Springer, Lect. Notes in Math. 274 (1973). | MR 373888 | Zbl 0244.18005
,