Degenerate principal series representations of Sp(2n,𝐑)
Lee, Soo Teck
Compositio Mathematica, Tome 104 (1996), p. 123-151 / Harvested from Numdam
Publié le : 1996-01-01
@article{CM_1996__103_2_123_0,
     author = {Lee, Soo Teck},
     title = {Degenerate principal series representations of $Sp(2n, \mathbf {R})$},
     journal = {Compositio Mathematica},
     volume = {104},
     year = {1996},
     pages = {123-151},
     mrnumber = {1411569},
     zbl = {0857.22010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1996__103_2_123_0}
}
Lee, Soo Teck. Degenerate principal series representations of $Sp(2n, \mathbf {R})$. Compositio Mathematica, Tome 104 (1996) pp. 123-151. http://gdmltest.u-ga.fr/item/CM_1996__103_2_123_0/

1 Alperin, J.: Diagrams for modules, J. Pure Appl. Algebra 16 (1980) 111-119. | MR 556154 | Zbl 0425.16027

2 Bargmann, V.: Irreducible unitary representations of the Lorentz group, Ann. of Math. 48 (1947) 568-640. | MR 21942 | Zbl 0045.38801

3 Bernstein, I.N., Gelfand, I.M. and Gelfand, S.I.: Model of representations of Lie groups, Sel. Math. Sov. 1 (1981) 121-142. | Zbl 0499.22004

4 Carter, R.: Raising and lowering operators for Sln, with applications to orthogonal bases of Slnmodules, in The Arcata Conference on Representations of Finite Groups, Proc. Sympos. Pure Math. 47, Part 2, 351-366, Amer. Math. Soc., Providence, 1987. | MR 933425 | Zbl 0656.20042

5 Carter, R. and Lusztig, G.: On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974) 193-242. | MR 354887 | Zbl 0298.20009

6 Goodearl, K. and Warfield, R.: An Introduction to Noncommutative Rings, London Mathematical Society student Texts 16, Cambridge University Press, Cambridge, 1989. | MR 1020298 | Zbl 0679.16001

7 Howe, R. and Lee, S.: Degenerate principal series representations of GL(n, C) and GL(n, R), in preparation.

8 Howe, R. and Tan, E.: Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations, Bull. Amer. Math. Soc. 28 (1993) 1-74. | MR 1172839 | Zbl 0794.22012

9 Johnson, K.: Degenerate principal series on tube type domains, Contemp. Math. 138 (1992) 175-187. | MR 1199127 | Zbl 0789.22027

10 Kudla, S. and Rallis, S.: Degenerate principal series and invariant distributions, Israel J. Math. 69 (1990) 25-45. | MR 1046171 | Zbl 0708.22005

11 Lee, S.: On some degenerate principal series representations of U(n, n), J. of Funct. Anal. 126 (1994) 305-366. | MR 1305072 | Zbl 0829.22026

12 Sahi, S.: Unitary representations on the Shilov boundary of a symmetric tube domain, in Representations of Groups and Algebras, Contemp. Math. 145 (1993) 275-286, Amer. Math. Soc., Providence. | MR 1216195 | Zbl 0790.22010

13 Sahi, S.: Jordan algebras and degenerate principal series, preprint. | MR 1329899 | Zbl 0822.22006

14 Varadarajan, V.: An Introduction to Harmonic Analysis on Semisimple Lie Groups, Cambridge Studies in Advanced Mathematics, Vol 16, Cambridge Univ. Press, Cambridge, 1989. | MR 1071183 | Zbl 0753.22003

15 Wallach, N.R.: Real Reductive Groups I, Academic Press, 1988. | MR 929683 | Zbl 0666.22002

16 Zhang, G.: Jordan algebras and generalized principal series representation, preprint. | MR 1343649 | Zbl 0829.22023